33 research outputs found

    Geographic hierarchical population genetic structuring in British European whitefish (Coregonus lavaretus) and its implications for conservation

    Get PDF
    The European whitefish Coregonus lavaretus complex represents one of the most diverse radiations within salmonids, with extreme morphological and genetic differentiation across its range. Such variation has led to the assignment of many populations to separate species. In Great Britain, the seven native populations of C. lavaretus (two in Scotland, four in England, one in Wales) were previously classified into three species, and recent taxonomic revision resurrected the previous nomenclature. Here we used a dataset of 15 microsatellites to: (1) investigate the genetic diversity of British populations, (2) assess the level of population structure and the relationships between British populations. Genetic diversity was highest in Welsh (HO = 0.50, AR = 5.29), intermediate in English (HO = 0.41–0.50, AR = 2.83–3.88), and lowest in Scottish populations (HO = 0.28–0.35, AR = 2.56–3.04). Population structure analyses indicated high genetic differentiation (global FST = 0.388) between all populations but for the two Scottish populations (FST = 0.063) and two English populations (FST = 0.038). Principal component analysis and molecular ANOVA revealed separation between Scottish, English, and Welsh populations, with the Scottish populations being the most diverged. We argue that the data presented here are not sufficient to support a separation of the British European whitefish populations into three separate species, but support the delineation of different ESUs for these populations

    Space-time dynamics in monitoring neotropical fish communities using eDNA metabarcoding.

    Get PDF
    The biodiverse Neotropical ecoregion remains insufficiently assessed, poorly managed, and threatened by unregulated human activities. Novel, rapid and cost-effective DNA-based approaches are valuable to improve understanding of the biological communities and for biomonitoring in remote areas. Here, we evaluate the potential of environmental DNA (eDNA) metabarcoding for assessing the structure and distribution of fish communities by analysing water and sediment from 11 locations along the Jequitinhonha River catchment (Brazil). Each site was sampled twice, before and after a major rain event in a five-week period and fish diversity was estimated using high-throughput sequencing of 12S rRNA amplicons. In total, 252 Molecular Operational Taxonomic Units (MOTUs) and 34 fish species were recovered, including endemic, introduced, and previously unrecorded species for this basin. Spatio-temporal variation of eDNA from fish assemblages was observed and species richness was nearly twice as high before the major rain event compared to afterwards. Yet, peaks of diversity were primarily associated with only four of the locations. No correlation between β-diversity and longitudinal distance or presence of dams was detected, but low species richness observed at sites located near dams might that these anthropogenic barriers may have an impact on local fish diversity. Unexpectedly high α-diversity levels recorded at the river mouth suggest that these sections should be further evaluated as putative "eDNA reservoirs" for rapid monitoring. By uncovering spatio-temporal changes, unrecorded biodiversity components, and putative anthropogenic impacts on fish assemblages, we further strengthen the potential of eDNA metabarcoding as a biomonitoring tool, especially in regions often neglected or difficult to access

    European marine omics biodiversity observation network: a strategic outline for the implementation of omics approaches in ocean observation

    Get PDF
    Marine ecosystems, ranging from coastal seas and wetlands to the open ocean, accommodate a wealth of biological diversity from small microorganisms to large mammals. This biodiversity and its associated ecosystem function occurs across complex spatial and temporal scales and is not yet fully understood. Given the wide range of external pressures on the marine environment, this knowledge is crucial for enabling effective conservation measures and defining the limits of sustainable use. The development and application of omics-based approaches to biodiversity research has helped overcome hurdles, such as allowing the previously hidden community of microbial life to be identified, thereby enabling a holistic view of an entire ecosystem’s biodiversity and functioning. The potential of omics-based approaches for marine ecosystems observation is enormous and their added value to ecosystem monitoring, management, and conservation is widely acknowledged. Despite these encouraging prospects, most omics-based studies are short-termed and typically cover only small spatial scales which therefore fail to include the full spatio-temporal complexity and dynamics of the system. To date, few attempts have been made to establish standardised, coordinated, broad scaled, and long-term omics observation networks. Here we outline the creation of an omics-based marine observation network at the European scale, the European Marine Omics Biodiversity Observation Network (EMO BON). We illustrate how linking multiple existing individual observation efforts increases the observational power in large-scale assessments of status and change in biodiversity in the oceans. Such large-scale observation efforts have the added value of cross-border cooperation, are characterised by shared costs through economies of scale, and produce structured, comparable data. The key components required to compile reference environmental datasets and how these should be linked are major challenges that we address.</jats:p

    Among-individual diet variation within a lake trout ecotype: lack of stability of niche use

    Get PDF
    In a polyphenic species, differences in resource use are expected among ecotypes, and homogeneity in resource use is expected within an ecotype. Yet, using a broad resource spectrum has been identified as a strategy for fishes living in unproductive northern environments, where food is patchily distributed and ephemeral. We investigated whether specialization of trophic resources by individuals occurred within the generalist piscivore ecotype of lake trout from Great Bear Lake, Canada, reflective of a form of diversity. Four distinct dietary patterns of resource use within this lake trout ecotype were detected from fatty acid composition, with some variation linked to spatial patterns within Great Bear Lake. Feeding habits of different groups within the ecotype were not associated with detectable morphological or genetic differentiation, suggesting that behavioral plasticity caused the trophic differences. A low level of genetic differentiation was detected between exceptionally large‐sized individuals and other piscivore individuals. We demonstrated that individual trophic specialization can occur within an ecotype inhabiting a geologically young system (8,000–10,000 yr BP), a lake that sustains high levels of phenotypic diversity of lake trout overall. The characterization of niche use among individuals, as done in this study, is necessary to understand the role that individual variation can play at the beginning of differentiation processes
    corecore