87 research outputs found

    Molecular dissection of the domain architecture and catalytic activities of human PrimPol

    Get PDF
    PrimPol is a primase–polymerase involved in nuclear and mitochondrial DNA replication in eukaryotic cells. Although PrimPol is predicted to possess an archaeo-eukaryotic primase and a UL52-like zinc finger domain, the role of these domains has not been established. Here, we report that the proposed zinc finger domain of human PrimPol binds zinc ions and is essential for maintaining primase activity. Although apparently dispensable for its polymerase activity, the zinc finger also regulates the processivity and fidelity of PrimPol's extension activities. When the zinc finger is disrupted, PrimPol becomes more promutagenic, has an altered translesion synthesis spectrum and is capable of faithfully bypassing cyclobutane pyrimidine dimer photolesions. PrimPol's polymerase domain binds to both single- and double-stranded DNA, whilst the zinc finger domain binds only to single-stranded DNA. We additionally report that although PrimPol's primase activity is required to restore wild-type replication fork rates in irradiated PrimPol−/− cells, polymerase activity is sufficient to maintain regular replisome progression in unperturbed cells. Together, these findings provide the first analysis of the molecular architecture of PrimPol, describing the activities associated with, and interplay between, its functional domains and defining the requirement for its primase and polymerase activities during nuclear DNA replication

    Heterozygous ANKRD17 loss-of-function variants cause a syndrome with intellectual disability, speech delay, and dysmorphism

    Get PDF
    ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder

    Overexpression of DNA Polymerase Zeta Reduces the Mitochondrial Mutability Caused by Pathological Mutations in DNA Polymerase Gamma in Yeast

    Get PDF
    In yeast, DNA polymerase zeta (Rev3 and Rev7) and Rev1, involved in the error-prone translesion synthesis during replication of nuclear DNA, localize also in mitochondria. We show that overexpression of Rev3 reduced the mtDNA extended mutability caused by a subclass of pathological mutations in Mip1, the yeast mitochondrial DNA polymerase orthologous to human Pol gamma. This beneficial effect was synergistic with the effect achieved by increasing the dNTPs pools. Since overexpression of Rev3 is detrimental for nuclear DNA mutability, we constructed a mutant Rev3 isoform unable to migrate into the nucleus: its overexpression reduced mtDNA mutability without increasing the nuclear one

    Response to correspondence on Reproducibility of CRISPR-Cas9 Methods for Generation of Conditional Mouse Alleles: A Multi-Center Evaluation

    Get PDF

    Heterozygous ANKRD17 loss-of-function variants cause a syndrome with intellectual disability, speech delay, and dysmorphism

    Get PDF
    ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder.Neurolog

    An automatic assessment scheme for steel quality inspection

    No full text
    This paper presents an automatic system for steel quality assessment, by measuring textural properties of carbide distributions. In current steel inspection, specially etched and polished steel specimen surfaces are classified manually under a light microscope, by comparisons with a standard chart. This procedure is basically two-dimensional, reflecting the size of the carbide agglomerations and their directional distribution. To capture these textural properties in terms of image features, we first apply a rich set of image-processing operations, including mathematical morphology, multi-channel Gabor filtering, and the computation of texture measures with automatic scale selection in linear scale-space. Then, a feature selector is applied to a 40-dimensional feature space, and a classification scheme is defined, which on a sample set of more than 400 images has classification performance values comparable to those of human metallographers. Finally, a fully automatic inspection system is designed, which actively selects the most salient carbide structure on the specimen surface for subsequent classification. The feasibility of the overall approach for future use in the production process is demonstrated by a prototype system. It is also shown how the presented classification scheme allows for the definition of a new reference chart in terms of quantitative measures.QC 20100525</p

    The tunicate Salpa thompsoni :Population and feeding dynamics under bloom versus non-bloom conditions

    No full text
    This paper presents an automatic system for steel quality assessment, by measuring textural properties of carbide distributions. In current steel inspection, specially etched and polished steel specimen surfaces are classified manually under a light microscope, by comparisons with a standard chart. This procedure is basically two-dimensional, reflecting the size of the carbide agglomerations and their directional distribution. To capture these textural properties in terms of image features, we first apply a rich set of image-processing operations, including mathematical morphology, multi-channel Gabor filtering, and the computation of texture measures with automatic scale selection in linear scale-space. Then, a feature selector is applied to a 40-dimensional feature space, and a classification scheme is defined, which on a sample set of more than 400 images has classification performance values comparable to those of human metallographers. Finally, a fully automatic inspection system is designed, which actively selects the most salient carbide structure on the specimen surface for subsequent classification. The feasibility of the overall approach for future use in the production process is demonstrated by a prototype system. It is also shown how the presented classification scheme allows for the definition of a new reference chart in terms of quantitative measures.QC 20100525</p

    Generative modeling of spatio-temporal traffic sign trajectories ∗

    No full text
    We consider the task of automatic detection and recognition of traffic signs in video. We show that successful offthe-shelf detection (Viola-Jones) and classification (SVM) systems yield unsatisfactory results. Our main concern are high false positive detection rates which occur due to sparseness of the traffic signs in videos. We address the problem by enforcing spatio-temporal consistency of the detections corresponding to a distinct sign in video. We also propose a generative model of the traffic sign motion in the image plane, which is obtained by clustering the trajectories filtered by an appropriate procedure. The contextual information recovered by the proposed model will be employed in our future research on recognizing traffic signs in video. 1
    • …
    corecore