139 research outputs found

    Characterizing peritoneal dialysis catheter use in pediatric patients after cardiac surgery

    Get PDF
    ObjectiveChildren who undergo cardiac surgery are at high risk for renal insufficiency and abdominal compartment syndrome. Peritoneal dialysis catheter (PDC) implantation is used in this population for abdominal decompression and access for dialysis. However, there is no consensus regarding PDC use, and the practice varies widely. This study was undertaken to assess associated factors, outcomes, and variability in the use of PDC in patients who have undergone cardiac surgery.MethodsThe cohort was obtained from the Kids' Inpatient Database, years 2006 and 2009. Patients who underwent cardiac surgery were included and the subset that underwent PDC implantation during the same hospitalization was identified. Univariable and multivariable analyses assessed factors associated with PDC and survival.ResultsA cohort of 28,259 patients underwent cardiac surgery, of whom 558 (2%) had PDCs placed. In the PDC group, 39.1% (n = 218) had acute renal failure whereas 3.5% or patients (n = 974) in the non-PDC group had acute renal failure. Among patients receiving PDC, mortality was 20.3% (n = 113; vs 3.4% overall mortality, n = 955). Excluding patients with acute renal failure, mortality remained 12% (n = 41) for the PDC group. Factors associated significantly with PDC placement in the overall cohort were younger age, greater surgical complexity, nonelective admission, hospital region, use of cardiopulmonary bypass, and acute renal failure.ConclusionsPatients receiving PDC after cardiac surgery had 20% mortality, which remained 12% after excluding patients with acute renal failure. Given the variability in PDC use and poor outcomes, further research is needed to assess the possible benefit of earlier intervention for peritoneal access in this high-risk cohort

    Bandwidth is Political: Reachability in the Public Internet

    Full text link

    Expression of Tissue factor in Adenocarcinoma and Squamous Cell Carcinoma of the Uterine Cervix: Implications for immunotherapy with hI-con1, a factor VII-IgGFc chimeric protein targeting tissue factor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cervical cancer continues to be an important worldwide health problem for women. Up to 35% of patients who are diagnosed with and appropriately treated for cervical cancer will recur and treatment results are poor for recurrent disease. Given these sobering statistics, development of novel therapies for cervical cancer remains a high priority. We evaluated the expression of Tissue Factor (TF) in cervical cancer and the potential of hI-con1, an antibody-like-molecule targeted against TF, as a novel form of immunotherapy against multiple primary cervical carcinoma cell lines with squamous- and adenocarcinoma histology.</p> <p>Methods</p> <p>Because TF is a transmembrane receptor for coagulation factor VII/VIIa (fVII), in this study we evaluated the <it>in vitro </it>expression of TF in cervical carcinoma cell lines by immunohistochemistry (IHC), real time-PCR (qRT-PCR) and flow cytometry. Sensitivity to hI-con1-dependent cell-mediated-cytotoxicity (IDCC) was evaluated in 5-hrs-<sup>51</sup>chromium-release-assays against cervical cancer cell lines <it>in vitro</it>.</p> <p>Results</p> <p>Cytoplasmic and/or membrane TF expression was observed in 8 out of 8 (100%) of the tumor tissues tested by IHC and in 100% (11 out of 11) of the cervical carcinoma cell lines tested by real-time-PCR and flow cytometry but not in normal cervical keratinocytes (<it>p </it>= 0.0023 qRT-PCR; <it>p </it>= 0.0042 flow cytometry). All primary cervical cancer cell lines tested overexpressing TF, regardless of their histology, were highly sensitive to IDCC (mean killing ± SD, 56.2% ± 15.9%, range, 32.4%-76.9%, <it>p </it>< 0.001), while negligible cytotoxicity was seen in the absence of hI-con1 or in the presence of rituximab-control-antibody. Low doses of interleukin-2 further increased the cytotoxic effect induced by hI-con1 (<it>p </it>= 0.025) while human serum did not significantly decrease IDCC against cervical cancer cell lines (<it>p </it>= 0.597).</p> <p>Conclusions</p> <p>TF is highly expressed in squamous and adenocarcinoma of the uterine cervix. hI-con1 induces strong cytotoxicity against primary cervical cancer cell lines overexpressing TF and may represent a novel therapeutic agent for the treatment of cervical cancer refractory to standard treatment modalities.</p

    Taxonomic and Environmental Variability in the Elemental Composition and Stoichiometry of Individual Dinoflagellate and Diatom Cells from the NW Mediterranean Sea

    Get PDF
    Here we present, for the first time, the elemental concentration, including C, N and O, of single phytoplankton cells collected from the sea. Plankton elemental concentration and stoichiometry are key variables in phytoplankton ecophysiology and ocean biogeochemistry, and are used to link cells and ecosystems. However, most field studies rely on bulk techniques that overestimate carbon and nitrogen because the samples include organic matter other than plankton organisms. Here we used X-ray microanalysis (XRMA), a technique that, unlike bulk analyses, gives simultaneous quotas of C, N, O, Mg, Si, P, and S, in single-cell organisms that can be collected directly from the sea. We analysed the elemental composition of dinoflagellates and diatoms (largely Chaetoceros spp.) collected from different sites of the Catalan coast (NW Mediterranean Sea). As expected, a lower C content is found in our cells compared to historical values of cultured cells. Our results indicate that, except for Si and O in diatoms, the mass of all elements is not a constant fraction of cell volume but rather decreases with increasing cell volume. Also, diatoms are significantly less dense in all the measured elements, except Si, compared to dinoflagellates. The N:P ratio of both groups is higher than the Redfield ratio, as it is the N:P nutrient ratio in deep NW Mediterranean Sea waters (N:P = 20–23). The results suggest that the P requirement is highest for bacterioplankton, followed by dinoflagellates, and lowest for diatoms, giving them a clear ecological advantage in P-limited environments like the Mediterranean Sea. Finally, the P concentration of cells of the same genera but growing under different nutrient conditions was the same, suggesting that the P quota of these cells is at a critical level. Our results indicate that XRMA is an accurate technique to determine single cell elemental quotas and derived conversion factors used to understand and model ocean biogeochemical cycles

    Pemphigus autoimmunity: Hypotheses and realities

    Get PDF
    The goal of contemporary research in pemphigus vulgaris and pemphigus foliaceus is to achieve and maintain clinical remission without corticosteroids. Recent advances of knowledge on pemphigus autoimmunity scrutinize old dogmas, resolve controversies, and open novel perspectives for treatment. Elucidation of intimate mechanisms of keratinocyte detachment and death in pemphigus has challenged the monopathogenic explanation of disease immunopathology. Over 50 organ-specific and non-organ-specific antigens can be targeted by pemphigus autoimmunity, including desmosomal cadherins and other adhesion molecules, PERP cholinergic and other cell membrane (CM) receptors, and mitochondrial proteins. The initial insult is sustained by the autoantibodies to the cell membrane receptor antigens triggering the intracellular signaling by Src, epidermal growth factor receptor kinase, protein kinases A and C, phospholipase C, mTOR, p38 MAPK, JNK, other tyrosine kinases, and calmodulin that cause basal cell shrinkage and ripping desmosomes off the CM. Autoantibodies synergize with effectors of apoptotic and oncotic pathways, serine proteases, and inflammatory cytokines to overcome the natural resistance and activate the cell death program in keratinocytes. The process of keratinocyte shrinkage/detachment and death via apoptosis/oncosis has been termed apoptolysis to emphasize that it is triggered by the same signal effectors and mediated by the same cell death enzymes. The natural course of pemphigus has improved due to a substantial progress in developing of the steroid-sparing therapies combining the immunosuppressive and direct anti-acantholytic effects. Further elucidation of the molecular mechanisms mediating immune dysregulation and apoptolysis in pemphigus should improve our understanding of disease pathogenesis and facilitate development of steroid-free treatment of patients
    corecore