562 research outputs found

    Exact results for the thermal and magnetic properties of strong coupling ladder compounds

    Get PDF
    We investigate the thermal and magnetic properties of the integrable su(4) ladder model by means of the quantum transfer matrix method. The magnetic susceptibility, specific heat, magnetic entropy and high field magnetization are evaluated from the free energy derived via the recently proposed method of high temperature expansion for exactly solved models. We show that the integrable model can be used to describe the physics of the strong coupling ladder compounds. Excellent agreement is seen between the theoretical results and the experimental data for the known ladder compounds (5IAP)2_2CuBr4_4⋅\cdot2H2_2O, Cu2_{2}(C5_5H12_{12}N2_2)2_2Cl4_4 etc.Comment: 10 pages, 5 figure

    Bethe Ansatz study of one-dimensional Bose and Fermi gases with periodic and hard wall boundary conditions

    Full text link
    We extend the exact periodic Bethe Ansatz solution for one-dimensional bosons and fermions with delta-interaction and arbitrary internal degrees of freedom to the case of hard wall boundary conditions. We give an analysis of the ground state properties of fermionic systems with two internal degrees of freedom, including expansions of the ground state energy in the weak and strong coupling limits in the repulsive and attractive regimes.Comment: 27 pages, 6 figures, key reference added, typos correcte

    Ion association in concentrated NaCI brines from ambient to supercritical conditions: results from classical molecular dynamics simulations

    Get PDF
    Highly concentrated NaCl brines are important geothermal fluids; chloride complexation of metals in such brines increases the solubility of minerals and plays a fundamental role in the genesis of hydrothermal ore deposits. There is experimental evidence that the molecular nature of the NaCl–water system changes over the pressure–temperature range of the Earth's crust. A transition of concentrated NaCl–H(2)O brines to a "hydrous molten salt" at high P and T has been argued to stabilize an aqueous fluid phase in the deep crust. In this work, we have done molecular dynamic simulations using classical potentials to determine the nature of concentrated (0.5–16 m) NaCl–water mixtures under ambient (25°C, 1 bar), hydrothermal (325°C, 1 kbar) and deep crustal (625°C, 15 kbar) conditions. We used the well-established SPCE model for water together with the Smith and Dang Lennard-Jones potentials for the ions (J. Chem. Phys., 1994, 100, 3757). With increasing temperature at 1 kbar, the dielectric constant of water decreases to give extensive ion-association and the formation of polyatomic (Na(n)Cl(m))(n-m )clusters in addition to simple NaCl ion pairs. Large polyatomic (Na(n)Cl(m))(n-m )clusters resemble what would be expected in a hydrous NaCl melt in which water and NaCl were completely miscible. Although ion association decreases with pressure, temperatures of 625°C are not enough to overcome pressures of 15 kbar; consequently, there is still enhanced Na–Cl association in brines under deep crustal conditions

    Target Selection for the SDSS-IV APOGEE-2 Survey

    Full text link
    APOGEE-2 is a high-resolution, near-infrared spectroscopic survey observing roughly 300,000 stars across the entire sky. It is the successor to APOGEE and is part of the Sloan Digital Sky Survey IV (SDSS-IV). APOGEE-2 is expanding upon APOGEE's goals of addressing critical questions of stellar astrophysics, stellar populations, and Galactic chemodynamical evolution using (1) an enhanced set of target types and (2) a second spectrograph at Las Campanas Observatory in Chile. APOGEE-2 is targeting red giant branch (RGB) and red clump (RC) stars, RR Lyrae, low-mass dwarf stars, young stellar objects, and numerous other Milky Way and Local Group sources across the entire sky from both hemispheres. In this paper, we describe the APOGEE-2 observational design, target selection catalogs and algorithms, and the targeting-related documentation included in the SDSS data releases.Comment: 19 pages, 6 figures. Accepted to A

    Analogs of the CLV3 Peptide: Synthesis and Structure–Activity Relationships Focused on Proline Residues

    Get PDF
    CLAVATA3 (CLV3) is a plant peptide hormone in which the proline residues are post-translationally hydroxylated and glycosylated. CLV3 plays a key role in controlling the stem cell mass in the shoot meristem of Arabidopsis thaliana. In a previous report, we identified a dodecapeptide (MCLV3) from CLV3-overexpressing Arabidopsis calli; MCLV3 was the smallest functional peptide derived from the CLV3 precursor. Here, we designed a series of MCLV3 analogs in which proline residues were substituted with proline derivatives or N-substituted glycines (peptoids). Peptoid substitution at Pro9 decreased bioactivity without affecting specific binding to the CLV1-related protein in cauliflower membrane. These findings suggest that peptoid-substituted peptides would be lead compounds for developing potential agonists and antagonists of CLV3

    KELT-20b: A Giant Planet With A Period Of P ~ 3.5 Days Transiting The V ~ 7.6 Early A Star HD 185603

    Get PDF
    We report the discovery of KELT-20b, a hot Jupiter transiting a early A star, HD 185603, with an orbital period of days. Archival and follow-up photometry, Gaia parallax, radial velocities, Doppler tomography, and AO imaging were used to confirm the planetary nature of KELT-20b and characterize the system. From global modeling we infer that KELT-20 is a rapidly rotating ( ) A2V star with an effective temperature of K, mass of , radius of , surface gravity of , and age of . The planetary companion has a radius of , a semimajor axis of au, and a linear ephemeris of . We place a upper limit of on the mass of the planet. Doppler tomographic measurements indicate that the planetary orbit normal is well aligned with the projected spin axis of the star ( ). The inclination of the star is constrained to , implying a three-dimensional spin–orbit alignment of . KELT-20b receives an insolation flux of , implying an equilibrium temperature of of ∌2250 K, assuming zero albedo and complete heat redistribution. Due to the high stellar , KELT-20b also receives an ultraviolet (wavelength nm) insolation flux of , possibly indicating significant atmospheric ablation. Together with WASP-33, Kepler-13 A, HAT-P-57, KELT-17, and KELT-9, KELT-20 is the sixth A star host of a transiting giant planet, and the third-brightest host (in V ) of a transiting planet

    KELT-18b: Puffy Planet, Hot Host, Probably Perturbed

    Get PDF
    We report the discovery of KELT-18b, a transiting hot Jupiter in a 2.87-day orbit around the bright ( V = 10.1), hot, F4V star BD+60 1538 (TYC 3865-1173-1). We present follow-up photometry, spectroscopy, and adaptive optics imaging that allow a detailed characterization of the system. Our preferred model fits yield a host stellar temperature of K and a mass of , situating it as one of only a handful of known transiting planets with hosts that are as hot, massive, and bright. The planet has a mass of , a radius of , and a density of , making it one of the most inflated planets known around a hot star. We argue that KELT-18b’s high temperature and low surface gravity, which yield an estimated ∌600 km atmospheric scale height, combined with its hot, bright host, make it an excellent candidate for observations aimed at atmospheric characterization. We also present evidence for a bound stellar companion at a projected separation of ∌1100 au, and speculate that it may have contributed to the strong misalignment we suspect between KELT-18\u27s spin axis and its planet’s orbital axis. The inferior conjunction time is 2457542.524998 ± 0.000416 (BJD TDB ) and the orbital period is 2.8717510 ± 0.0000029 days. We encourage Rossiter–McLaughlin measurements in the near future to confirm the suspected spin–orbit misalignment of this system

    Monitoring permanent CO2 storage by in situ mineral carbonation using a reactive tracer technique

    Get PDF
    AbstractIn situ mineral carbonation provides the most effective and permanent solution for geologic CO2 storage. Basaltic rocks have the potential to store large volumes of CO2 as (Ca, Mg, Fe) carbonates [1]. Existing monitoring and verification techniques for geologic CO2 storage are insufficient to quantitatively characterize solubility and mineral trapping in a geologic reservoir. We developed and tested a new reactive tracer technique for quantitative monitoring and detection of dissolved and chemically transformed CO2. The technique involves the active tagging of the injected CO2 with low levels of radiocarbon (14C) as a reactive tracer in combination with the injection of non-reactive tracers such as sulfurhexafluoride (SF6) and trifluoromethylsulphur pentafluoride (SF5CF3). The tracer technique has been applied at the CarbFix pilot injection site in Hellisheidi, Iceland as part of a comprehensive geochemical monitoring program during two injection phases; Phase III and IV. SF6 and SF5CF3 confirm the arrival of the injected CO2 and CO2+H2S solutions at the first observation well HN04, which is 125m west of the injection well at 520 m depth. The initial breakthrough of the migrating dissolved CO2 front occurred 63 and 62 days after injection began as evidenced by an initial peak in the SF6, SF5CF3, 14C, and dissolved inorganic carbon (DIC) concentrations. The major increase in the non-reactive tracer concentrations occurred several months after the initial breakthrough, although no major concentration increase has been observed for 14C and DIC suggesting that mineral reactions are dominant during CO2 injection

    The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland

    Get PDF
    In situ carbonation of basaltic rocks could provide a long-term carbon storage solution, which is essential for the success and public acceptance of carbon storage. To demonstrate the viability of this carbon storage solution, 175 tonnes (t) of pure CO2 and 73 tonnes (t) of a 75% CO2-24% H2S-1% H2-gas mixture were sequentially injected into basaltic rocks at the CarbFix site at Hellisheidi, SW-Iceland from January to August 2012. This paper reports the chemistry and saturation states with respect to potential secondary minerals of sub-surface fluids sampled prior to, during, and after the injections. All gases were dissolved in water during their injection into permeable basalts located at 500–800 m depth with temperatures ranging from 20 to 50 °C. A pH decrease and dissolved inorganic carbon (DIC) increase was observed in the first monitoring well, HN-04, about two weeks after each injection began. At storage reservoir target depth, this diverted monitoring well is located ∌125 m downstream from the injection well. A significant increase in H2S concentration, however, was not observed after the second injection. Sampled fluids from the HN-04 well show a rapid increase in Ca, Mg, and Fe concentration during the injections with a gradual decline in the following months. Calculations indicate that the sampled fluids are saturated with respect to siderite about four weeks after the injections began, and these fluids attained calcite saturation about three months after each injection. Pyrite is supersaturated prior to and during the mixed gas injection and in the following months. In July 2013, the HN-04 fluid sampling pump broke down due to calcite precipitation, verifying the carbonation of the injected CO2. Mass balance calculations, based on the recovery of non-reactive tracers co-injected into the subsurface together with the acid-gases, confirm that more than 95% of the CO2 injected into the subsurface was mineralised within a year, and essentially all of the injected H2S was mineralised within four months of its injection. These results demonstrate the viability of the in situ mineralisation of these gases in basaltic rocks as a long-term and safe storage solution for CO2 and H2S
    • 

    corecore