76 research outputs found

    Phylogeny, morphological evolution, and speciation of endemic brassicaceae genera in the cape flora of southern Africa

    Get PDF
    Heliophila (ca. 73 spp.), the ditypic Cycloptychis and Thlaspeocarpa, and the monotypic Schlechteria, Silicularia, Brachycarpaea, and Chamira are endemic to the Cape region of South Africa, where they are the dominant genera of Brassicaceae. They may be regarded as the most diversified Brassicaceae lineage in every aspect of habit, leaf, flower, and fruit morphology. The characters used in the separation of these genera and their species, especially fruit type (silique vs. silicle), dehiscence (dehiscent vs. indehiscent), compression (latiseptate vs. angustiseptate), and cotyledonary type (spirolobal, diplecolobal, twice conduplicate), have been used extensively in the delimitation of tribes. The relationship and taxonomic limits among these genera are unclear and controversial. The present ITS study demonstrates the monophyly of tribe Heliophileae, with Chamira as sister clade. The other five smaller genera above are nested within two of the three main lineages of Heliophila, to which they should be reduced to synonymy. The current study reveals parallel evolution of fruit characters often used heavily in the traditional classification schemes of the family. However, the arrangement of species into three main clades largely corresponds with the distribution of morphological characters (e.g., habit, leaf shape, seed structure, inflorescence type, and presence/absence of basal appendages on the pedicels, petals, and staminal filaments) not adequately accounted for in previous studies. Estimation of divergence times of the main lineages of Heliophila is in agreement with recent estimations in other plant groups, all of which date the diversification against a background of aridification in the Pliocene and Pleistocene. Species of one main clade are perennial, microphyllous shrubs/subshrubs typically restricted to poor sandstone soils in the southwestern and western parts of the Cape Floristic Region of South Africa. Species of the other two clades are predominantly annuals that grow in more arid regions of Namibia and Namaqualand, as well as in the above sandstone areas of the Cape Region. The adaptive significance of various floral structures is discussed in terms of their possible role in the rapid diversification within Heliophila

    Time-calibrated phylogenetic trees establish a lag between polyploidisation and diversification in Nicotiana (Solanaceae)

    Get PDF
    We investigate the timing of diversification in allopolyploids of Nicotiana (Solanaceae) utilising sequence data of maternal and paternal origin to look for evidence of a lag phase during which diploidisation took place. Bayesian relaxed clock phylogenetic methods show recent allopolyploids are a result of several unique polyploidisation events, and older allopolyploid sections have undergone subsequent speciation at the polyploid level (i.e. a number of these polyploid species share a singular origin). The independently formed recent polyploid species in the genus all have mean age estimates below 1 million years ago (Ma). Nicotiana  section Polydicliae (two species) evolved 1.5 Ma, N. section Repandae (four species) formed 4 Ma, and N. section Suaveolentes (*35 species) is about 6 million years old. A general trend of higher speciation rates in older polyploids is evident, but diversification dramatically increases at approximately 6 Ma (in section Suaveolentes). Nicotiana sect. Suaveolentes has spectacularly radiated to form 35 species in Australia and some Pacific islands following a lag phase of almost 6 million years. Species have filled new ecological niches and undergone extensive diploidisation (e.g. chromosome fusions bringing the ancestral allotetraploid number, n = 24, down to n = 15 and ribosomal loci numbers back to diploid condition). Considering the progenitors of Suaveolentes inhabit South America, this represents the colonisation of Australia by polyploids that have subsequently undergone a recent radiation into new environments. To our knowledge, this study is the first report of a substantial lag phase being investigated below the family level

    The best of both worlds: combining lineage specific and universal bait sets in target-enrichment hybridization reactions

    Get PDF
    PREMISE: Researchers adopting target-enrichment approaches often struggle with the decision of whether to use universal or lineage-specific probe sets. To circumvent this quandary, we investigate the efficacy of a simultaneous enrichment by combining universal probes and lineage-specific probes in a single hybridization reaction, to benefit from the qualities of both probe sets with little added cost or effort.METHODS AND RESULTS: Using 26 Brassicaceae libraries and standard enrichment protocols, we compare results from three independent data sets. A large average fraction of reads mapping to the Angiosperms353 (24–31%) and Brassicaceae (35–59%) targets resulted in a sizable reconstruction of loci for each target set (x̄ ≥ 70%).CONCLUSIONS: High levels of enrichment and locus reconstruction for the two target sets demonstrate that the sampling of genomic regions can be easily extended through the combination of probe sets in single enrichment reactions. We hope that these findings will facilitate the production of expanded data sets that answer individual research questions and simultaneously allow wider applications by the research community as a whole.NaturalisPlant science

    Geographic genetic structure of Iberian columbines (gen. Aquilegia)

    Get PDF
    Southern European columbines (genus Aquilegia)are involved in active processes of diversification, and the Iberian Peninsula offers a privileged observatory to witness the process. Studies on Iberian columbines have provided significant advances on species diversification,but we still lack a complete perspective of the genetic diversification in the Iberian scenario. This work explores how genetic diversity of the genus Aquilegia is geographically structured across the Iberian Peninsula. We used Bayesian clustering methods, principal coordinates analyses, and NJ phenograms to assess the genetic relationships among 285 individuals from 62 locations and detect the main lineages. Genetic diversity of Iberian columbines consists of five geographically structured lineages, corresponding to different Iberian taxa. Differentiation among lineages shows particularly complex admixture patterns at Northeast and highly homogeneous toward Northwest and Southeast. This geographic genetic structure suggests the existence of incomplete lineage sorting and interspecific hybridization as could be expected in recent processes of diversification under the influence of quaternary postglacial migrations. This scenario is consistent with what is proposed by the most recent studies on European and Iberian columbines, which point to geographic isolation and divergent selection by habitat specialization as the main diversification drivers of the Iberian Aquilegia complex

    Contrasting Biogeographic and Diversification Patterns in Two Mediterranean-Type Ecosystems

    Get PDF
    The five Mediterranean regions of the world comprise almost 50,000 plant species (ca 20% of the known vascular plants) despite accounting for less than 5% of the world’s land surface. The ecology and evolutionary history of two of these regions, the Cape Floristic Region and the Mediterranean Basin, have been extensively investigated, but there have been few studies aimed at understanding the historical relationships between them. Here, we examine the biogeographic and diversification processes that shaped the evolution of plant diversity in the Cape and the Mediterranean Basin using a large plastid data set for the geophyte family Hyacinthaceae (comprising ca. 25% of the total diversity of the group), a group found mainly throughout Africa and Eurasia. Hyacinthaceae is a predominant group in the Cape and the Mediterranean Basin both in terms of number of species and their morphological and ecological variability. Using state-of-the-art methods in biogeography and diversification, we found that the Old World members of the family originated in sub-Saharan Africa at the Paleocene–Eocene boundary and that the two Mediterranean regions both have high diversification rates, but contrasting biogeographic histories. While the Cape diversity has been greatly influenced by its relationship with sub-Saharan Africa throughout the history of the family, the Mediterranean Basin had no connection with the latter after the onset of the Mediterranean climate in the region and the aridification of the Sahara. The Mediterranean Basin subsequently contributed significantly to the diversity of neighbouring areas, especially Northern Europe and the Middle East, whereas the Cape can be seen as a biogeographical cul-de-sac, with only a few dispersals toward sub-Saharan Africa. The understanding of the evolutionary history of these two important repositories of biodiversity would benefit from the application of the framework developed here to other groups of plants present in the two regions

    A Continental-Wide Perspective: The Genepool of Nuclear Encoded Ribosomal DNA and Single-Copy Gene Sequences in North American Boechera (Brassicaceae)

    Get PDF
    74 of the currently accepted 111 taxa of the North American genus Boechera (Brassicaceae) were subject to pyhlogenetic reconstruction and network analysis. The dataset comprised 911 accessions for which ITS sequences were analyzed. Phylogenetic analyses yielded largely unresolved trees. Together with the network analysis confirming this result this can be interpreted as an indication for multiple, independent, and rapid diversification events. Network analyses were superimposed with datasets describing i) geographical distribution, ii) taxonomy, iii) reproductive mode, and iv) distribution history based on phylogeographic evidence. Our results provide first direct evidence for enormous reticulate evolution in the entire genus and give further insights into the evolutionary history of this complex genus on a continental scale. In addition two novel single-copy gene markers, orthologues of the Arabidopsis thaliana genes At2g25920 and At3g18900, were analyzed for subsets of taxa and confirmed the findings obtained through the ITS data
    • …
    corecore