596 research outputs found

    Recombination sequence-binding protein in thymocytes undergoing T-cell receptor gene rearrangement.

    Full text link

    HELLS (Helicase, Lymphoid-Specific)

    Get PDF
    Review on HELLS, with data on DNA/RNA, on the protein encoded and where the gene is implicated

    Interleukin 7 Receptor Control of  T Cell Receptor γ Gene Rearrangement: Role of Receptor-associated Chains and Locus Accessibility

    Get PDF
    VDJ recombination of T cell receptor and immunoglobulin loci occurs in immature lymphoid cells. Although the molecular mechanisms of DNA cleavage and ligation have become more clear, it is not understood what controls which target loci undergo rearrangement. In interleukin 7 receptor (IL-7R)α−/− murine thymocytes, it has been shown that rearrangement of the T cell receptor (TCR)-γ locus is virtually abrogated, whereas other rearranging loci are less severely affected. By examining different strains of mice with targeted mutations, we now observe that the signaling pathway leading from IL-7Rα to rearrangement of the TCR-γ locus requires the γc receptor chain and the γc-associated Janus kinase Jak3. Production of sterile transcripts from the TCR-γ locus, a process that generally precedes rearrangement of a locus, was greatly repressed in IL-7Rα−/− thymocytes. The repressed transcription was not due to a lack in transcription factors since the three transcription factors known to regulate this locus were readily detected in IL-7Rα−/− thymocytes. Instead, the TCR-γ locus was shown to be methylated in IL-7Rα−/− thymocytes. Treatment of IL-7Rα−/− precursor T cells with the specific histone deacetylase inhibitor trichostatin A released the block of TCR-γ gene rearrangement. This data supports the model that IL-7R promotes TCR-γ gene rearrangement by regulating accessibility of the locus via demethylation and histone acetylation of the locus

    Tethering of Lsh at the Oct4 locus promotes gene repression associated with epigenetic changes

    Get PDF
    Lsh is a chromatin remodeling factor that regulates DNA methylation and chromatin function in mammals. The dynamics of these chromatin changes and whether they are directly controlled by Lsh remain unclear. To understand the molecular mechanisms of Lsh chromatin controlled regulation of gene expression, we established a tethering system that recruits a Gal4-Lsh fusion protein to an engineered Oct4 locus through Gal4 binding sites in murine embryonic stem (ES) cells. We examined the molecular epigenetic events induced by Lsh binding including: histone modification, DNA methylation and chromatin accessibility to determine nucleosome occupancy before and after embryonic stem cell differentiation. Our results indicate that Lsh assists gene repression upon binding to the Oct4 promoter region. Furthermore, we detected less chromatin accessibility and reduced active histone modifications at the tethered site in undifferentiated ES, while GFP reporter gene expression and DNA methylation patterns remained unchanged at this stage. Upon differentiation, association of Lsh promotes transcriptional repression of the reporter gene accompanied by the increase of repressive histone marks and a gain of DNA methylation at distal and proximal Oct4 enhancer sites. Taken together, this approach allowed us to examine Lsh mediated epigenetic regulation as a dynamic process and revealed chromatin accessibility changes as the primary consequence of Lsh function

    Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome

    Get PDF
    The human gut microbiota is an important metabolic organ, yet little is known about how its individual species interact, establish dominant positions, and respond to changes in environmental factors such as diet. In this study, gnotobiotic mice were colonized with an artificial microbiota comprising 12 sequenced human gut bacterial species and fed oscillating diets of disparate composition. Rapid, reproducible, and reversible changes in the structure of this assemblage were observed. Time-series microbial RNA-Seq analyses revealed staggered functional responses to diet shifts throughout the assemblage that were heavily focused on carbohydrate and amino acid metabolism. High-resolution shotgun metaproteomics confirmed many of these responses at a protein level. One member, Bacteroides cellulosilyticus WH2, proved exceptionally fit regardless of diet. Its genome encoded more carbohydrate active enzymes than any previously sequenced member of the Bacteroidetes. Transcriptional profiling indicated that B. cellulosilyticus WH2 is an adaptive forager that tailors its versatile carbohydrate utilization strategy to available dietary polysaccharides, with a strong emphasis on plant-derived xylans abundant in dietary staples like cereal grains. Two highly expressed, diet-specific polysaccharide utilization loci (PULs) in B. cellulosilyticus WH2 were identified, one with characteristics of xylan utilization systems. Introduction of a B. cellulosilyticus WH2 library comprising >90,000 isogenic transposon mutants into gnotobiotic mice, along with the other artificial community members, confirmed that these loci represent critical diet-specific fitness determinants. Carbohydrates that trigger dramatic increases in expression of these two loci and many of the organism's 111 other predicted PULs were identified by RNA-Seq during in vitro growth on 31 distinct carbohydrate substrates, allowing us to better interpret in vivo RNA-Seq and proteomics data. These results offer insight into how gut microbes adapt to dietary perturbations at both a community level and from the perspective of a well-adapted symbiont with exceptional saccharolytic capabilities, and illustrate the value of artificial communities

    LSH mediates gene repression through macroH2A deposition

    Get PDF
    The human Immunodeficiency Centromeric Instability Facial Anomalies (ICF) 4 syndrome is a severe disease with increased mortality caused by mutation in the LSH gene. Although LSH belongs to a family of chromatin remodeling proteins, it remains unknown how LSH mediates its function on chromatin in vivo. Here, we use chemical-induced proximity to rapidly recruit LSH to an engineered locus and find that LSH specifically induces macroH2A1.2 and macroH2A2 deposition in an ATP-dependent manner. Tethering of LSH induces transcriptional repression and silencing is dependent on macroH2A deposition. Loss of LSH decreases macroH2A enrichment at repeat sequences and results in transcriptional reactivation. Likewise, reduction of macroH2A by siRNA interference mimicks transcriptional reactivation. ChIP-seq analysis confirmed that LSH is a major regulator of genome-wide macroH2A distribution. Tethering of ICF4 mutations fails to induce macroH2A deposition and ICF4 patient cells display reduced macroH2A deposition and transcriptional reactivation supporting a pathogenic role for altered marcoH2A deposition. We propose that LSH is a major chromatin modulator of the histone variant macroH2A and that its ability to insert marcoH2A into chromatin and transcriptionally silence is disturbed in the ICF4 syndrome

    Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized

    Get PDF
    Understanding protein structure is of crucial importance in science, medicine and biotechnology. For about two decades, knowledge based potentials based on pairwise distances -- so-called "potentials of mean force" (PMFs) -- have been center stage in the prediction and design of protein structure and the simulation of protein folding. However, the validity, scope and limitations of these potentials are still vigorously debated and disputed, and the optimal choice of the reference state -- a necessary component of these potentials -- is an unsolved problem. PMFs are loosely justified by analogy to the reversible work theorem in statistical physics, or by a statistical argument based on a likelihood function. Both justifications are insightful but leave many questions unanswered. Here, we show for the first time that PMFs can be seen as approximations to quantities that do have a rigorous probabilistic justification: they naturally arise when probability distributions over different features of proteins need to be combined. We call these quantities reference ratio distributions deriving from the application of the reference ratio method. This new view is not only of theoretical relevance, but leads to many insights that are of direct practical use: the reference state is uniquely defined and does not require external physical insights; the approach can be generalized beyond pairwise distances to arbitrary features of protein structure; and it becomes clear for which purposes the use of these quantities is justified. We illustrate these insights with two applications, involving the radius of gyration and hydrogen bonding. In the latter case, we also show how the reference ratio method can be iteratively applied to sculpt an energy funnel. Our results considerably increase the understanding and scope of energy functions derived from known biomolecular structures

    Predictive value of FDG-PET in patients with advanced medullary thyroid cancer undergoing vandetanib treatment

    Get PDF
    Introduction: The prognosis of medullary thyroid carcinoma (MTC) is poor using common chemotherapeutic approaches. However, during the last years encouraging results of recently introduced tyrosine kinase inhibitors (TKI) such as vandetanib have been published. In this study we aimed to correlate the results of 18^{18}F-fluorodeoxyglucose ([18^{18}F]FDG) positron emission tomography (PET) imaging with treatment outcome. Methods: Eighteen patients after thyroidectomy with recurrent/advanced MTC lesions receiving vandetanib (300 mg orally/day) could be analysed. A baseline 18^{18}F-FDG PET prior to and a follow-up 18^{18}F-FDG PET 3 months after TKI initiation were performed. During follow-up, tumor progression was assessed every 3 months including computed tomography according to RECIST. Progression-free survival (PFS) was correlated with the maximum standardized uptake value of 18^{18}F-FDG in lymph nodes (SUV(LN)max) or visceral metastases (SUV(MTS)max) as well as with clinical parameters using ROC analysis. Results: Within median 3.6 years of follow-up, 9 patients showed disease progression at median 8.5 months after TKI initiation. An elevated glucose consumption assessed by baseline 18^{18}F-FDG PET (SUV(LN)max > 7.25) could predict a shorter PFS (2 y) with an accuracy of 76.5% (SUV(LN)max 2.7) also demonstrated an unfavorable prognosis (accuracy, 85.7%). On the other hand, none of the clinical parameters reached significance in response prediction. Conclusions: In patients with advanced and progressive MTC, tumors with higher metabolic activity at baseline are more aggressive and more prone to progression as reflected by a shorter PFS; they should be monitored more closely. Preserved glucose consumption 3 months after treatment initiation was also related to poorer prognosis
    • …
    corecore