892 research outputs found

    Nonadditive Genetic Effects in Animal Behavior

    Get PDF
    Heritabilities, commonly used to predict evolutionary potential, are notoriously low for behaviors. Apart from strong contributions of environmental variance in reducing heritabilities, the additive genetic components can be very low, especially when they are camouflaged by nonadditive genetic effects. We first report the heritabilities of courtship traits in founder‐flush and control populations of the housefly (Musca domestica L.). We estimated the heritability of each male and female display through the regression of the courtships involving daughters and sons (with randomly selected mates) onto the “midparental” courtship values of their parents. Overall, the average heritability was significantly higher for the parent‐daughter assays than for the parent‐son assays. We attributed the low (even negative) heritabilities to genotype‐by‐environment interactions whereby the male’s behavior is influenced by the “environment” of his mating partner’s preferences for the display, generating epistasis through indirect genetic effects. Moreover, bottlenecked lines had up to 800% of the heritability of the controls, suggesting “conversion” of additive genetic variance from nonadditive components. Second, we used line‐cross assays on separate populations that had been selected for divergence in mating behavior to identify dominance and epistasis through heterosis and outbreeding depression in courtship. Finally, our literature review confirms the prevalence of such low heritabilities (i.e., a conservative mean of 0.38) and nonadditive genetics in other behavioral repertoires (64% of the studies). We conclude that animal behavior is especially prone to the gamut of quantitative genetic complexities that can result in negative heritabilities, negative selection responses, inbreeding depression, conversion, heterosis, and outbreeding depression

    Environmentally conscious consumption patterns in Hungarian households

    Get PDF
    This article provides a comprehensive review of the literature on the theoretical aspects of sustainable consumption. The conditions for consumers’ social responsibility and the formation of environmentally conscious behavior patterns will also be discussed, along with possible methods for motivating behavioral changes. The authors have completed a primary research study with the purpose of surveying environmentally conscious consumption patterns in Hungary. They also examined how the provision of appropriate information and the raising of awareness might encourage sustainable consumption. According to their findings, the respondents’ knowledge on environmentally conscious behavior was rather limited, and reinforcement was needed in identifying appropriate activity alternatives. This paper provides a summary of the qualitative research phase which employed in-depth interviews, logging and focus groups. The consecutive application of these methods enabled the authors to keep track of the process and the consequences of raising awareness

    NF-kB functions in synaptic signaling and behavior

    Get PDF
    Ca^(2+)-regulated gene transcription is essential to diverse physiological processes, including the adaptive plasticity associated with learning. We found that basal synaptic input activates the NF-kB transcription factor by a pathway requiring the Ca^(2+)/calmodulin-dependent kinase CaMKII and local submembranous Ca^(2+) elevation. The p65:p50 NF-kB form is selectively localized at synapses; p65-deficient mice have no detectable synaptic NF-kB. Activated NF-kB moves to the nucleus and could directly transmute synaptic signals into altered gene expression. Mice lacking p65 show a selective learning deficit in the spatial version of the radial arm maze. These observations suggest that long-term changes to adult neuronal function caused by synaptic stimulation can be regulated by NF-kB nuclear translocation and gene activation

    Atmospheric stilling offsets the benefits from reduced nutrient loading in a large shallow lake

    Get PDF
    As part of a global phenomenon, a 30% decrease in average wind speed since 1996 in southern Estonia together with more frequent easterly winds resulted in 47% decrease in bottom shear stress in the large (270 km2), shallow (mean depth 2.8 m), and eutrophic Lake VĂ”rtsjĂ€rv. Following a peak in eutrophication pressure in the 1970s–80s, the concentrations of total nutrients were declining. Nonmetric Multidimensional Scaling (NMDS) ordination of a 54-year phytoplankton community composition time-series (1964–2017) revealed three distinct periods with breaking points coinciding with changes in wind and/or water level. Contrary to expectations, we detected no decrease in optically active substances that could be related to wind stilling, whereas phytoplankton biomass showed an increasing trend despite reduced nutrient levels. Here we show how opening of the “light niche,” caused by declining amount of suspended sediments, was capitalized and filled by the light-limited phytoplankton community. We suggest that wind stilling is another global factor, complementary to climate warming that counteracts eutrophication mitigation in lakes and may provide a challenge to assessment of the lake ecological status.Main financial support for EMU: European Union’s Horizon 2020 research and innovation programme Under the Marie SkƂodowska-Curie Action, Innovative Training Networks, European Joint Doctorates.Project name, acronym and grant number: Management of climatic extreme events in lakes and reservoirs for the protection of ecosystem services, MANTEL, grant agreement No 722518.Publication date and, if applicable, length of embargo period: Published as Early View on 07.10.2019, no embargo period.Main financial support for EMU: European Union’s Horizon 2020 research and innovation programme Under the Marie SkƂodowska-Curie Action, Innovative Training Networks, European Joint Doctorate

    Electronic sculpting of ligand-GPCR subtype selectivity:the case of angiotensin II

    Get PDF
    GPCR subtypes possess distinct functional and pharmacological profiles, and thus development of subtype-selective ligands has immense therapeutic potential. This is especially the case for the angiotensin receptor subtypes AT1R and AT2R, where a functional negative control has been described and AT2R activation highlighted as an important cancer drug target. We describe a strategy to fine-tune ligand selectivity for the AT2R/AT1R subtypes through electronic control of ligand aromatic-prolyl interactions. Through this strategy an AT2R high affinity (<i>K</i><sub>i</sub> = 3 nM) agonist analogue that exerted 18,000-fold higher selectivity for AT2R versus AT1R was obtained. We show that this compound is a negative regulator of AT1R signaling since it is able to inhibit MCF-7 breast carcinoma cellular proliferation in the low nanomolar range
    • 

    corecore