15 research outputs found

    Oxygenated conditions in the aftermath of the Lomagundi-Jatuli Event : the carbon isotope and rare earth element signatures of the Paleoproterozoic Zaonega Formation, Russia

    Get PDF
    This study was supported by Estonian Research Council project PRG447, and the Estonian Centre of Analytical Chemistry. K.P. and A.L. were supported by the Research Council of Norway through its Centres of Excellence funding scheme grant No. 223259. K.P. acknowledges the Estonian Research Council grant MOBJD542 and T.M. PUT611.The c. 2.0 Ga Zaonega Formation of the Onega Basin (NW Russia) has been central in efforts to understand what led to the initial rise (Great Oxidation Event, GOE) and postulated fall in free atmospheric oxygen and associated high-amplitude carbon cycle excursions, the Lomagundi-Jatuli Event (LJE) and subsequent Shunga Event during Paleoproterozoic time. The Formation accumulated shortly after the LJE and encompasses both the recovery in the carbon cycle and hypothesised contraction of the oceanic oxidant pool. However, interpreting the correct environmental context recorded by geochemical signatures in the Zaonega rocks is difficult due to a complex depositional and diagenetic history. In order to robustly constrain that history, we undertook a multiproxy study (mineralogy, petrography, carbon isotope and rare earth element composition) of carbonate beds in the upper part of the Zaonega Formation recovered in the 102-m composite section of the OnZap drill-cores. Our findings differentiate primary environmental signatures from secondary overprinting and show that: (i) the best-preserved carbonate beds define an upwards increasing ή13Ccarb trend from c. -5.4‰ to near 0‰; and that (ii) large intra-bed ή13Ccarb variations reflect varying contributions of methanotrophic dissolved inorganic carbon (DIC) to the basinal DIC pool. Rare earth element and yttrium (REYSN) patterns confirm a marine origin of the carbonate beds whereas a consistent positive EuSN anomaly suggests a strong high temperature hydrothermal input during accumulation of the Zaonega Formation. Importantly, the presence of a negative CeSN anomaly in the REYSN pattern indicates an oxygenated atmosphere-ocean system shortly after the LJE and indicates that models invoking a fall in oxygen at that time require reassessment.PostprintPeer reviewe

    Linkages between the circulation and distribution of dissolved organic matter in the White Sea, Arctic Ocean

    Get PDF
    AbstractThe White Sea is a semi-enclosed Arctic marginal sea receiving a significant loading of freshwater (225–231km3yr−1 equaling an annual runoff yield of 2.5m) and dissolved organic matter (DOM) from river run-off. We report discharge weighed values of stable oxygen isotope ratios (ÎŽ18O) of −14.0‰ in Northern Dvina river for the period 10 May–12 October 2012. We found a significant linear relationship between salinity (S) and ÎŽ18O (ÎŽ18O=−17.66±0.58+0.52±0.02×S; R2=0.96, N=162), which indicates a dominant contribution of river water to the freshwater budget and little influence of sea ice formation or melt. No apparent brine additions from sea-ice formation is evident in the White Sea deep waters as seen from a joint analysis of temperature (T), S, ÎŽ18O and aCDOM(350) data, confirming previous suggestions about strong tidal induced vertical mixing in winter being the likely source of the deep waters. We investigated properties and distribution of colored dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in the White Sea basin and coastal areas in summer. We found contrasting DOM properties in the inflowing Barents Sea waters and White Sea waters influenced by terrestrial runoff. Values of absorption by CDOM at 350nm (aCDOM(350)) and DOC (exceeding 10m−1 and 550”moll−1, respectively) in surface waters of the White Sea basin are higher compared to other river-influenced coastal Arctic domains. Linear relationship between S and CDOM absorption, and S and DOC (DOC=959.21±52.99–25.80±1.79×S; R2=0.85; N=154) concentrations suggests conservative mixing of DOM in the White Sea. The strongest linear correlation between CDOM absorption and DOC was found in the ultraviolet (DOC=56.31±2.76+9.13±0.15×aCDOM(254); R2=0.99; N=155), which provides an easy and robust tool to trace DOC using CDOM absorption measurements as well as remote sensing algorithms. Deviations from this linear relationship in surface waters likely indicate contribution from different rivers along the coast of the White Sea. Characteristics of CDOM further indicate that there is limited removal or change in the DOM pool before it exits to the Barents Sea

    Nitrate stable isotopes and major ions in snow and ice samples from four Svalbard sites

    Get PDF
    Increasing reactive nitrogen (N-r) deposition in the Arctic may adversely impact N-limited ecosystems. To investigate atmospheric transport of N-r to Svalbard, Norwegian Arctic, snow and firn samples were collected from glaciers and analysed to define spatial and temporal variations (1 10 years) in major ion concentrations and the stable isotope composition (delta N-15 and delta O-18) of nitrate (NO3-) across the archipelago. The delta N-15(NO3-) and delta O-18(NO3-) averaged -4 parts per thousand and 67 parts per thousand in seasonal snow (2010-11) and -9 parts per thousand and 74 parts per thousand in firn accumulated over the decade 2001-2011. East-west zonal gradients were observed across the archipelago for some major ions (non-sea salt sulphate and magnesium) and also for delta N-15(NO3-) and delta O-18(NO3-) in snow, which suggests a different origin for air masses arriving in different sectors of Svalbard. We propose that snowfall associated with long-distance air mass transport over the Arctic Ocean inherits relatively low delta N-15(NO3-) due to in-transport N isotope fractionation. In contrast, faster air mass transport from the north-west Atlantic or northern Europe results in snowfall with higher delta N-15(NO3-) because in-transport fractionation of N is then time-limited

    Linkage of diagenesis to depositional environments and stratigraphy in the northern part of the Baltic basin

    No full text
    The spatial and temporal distribution of carbonate cementation was investigated in Devonian siliciclastic rocks of the northern part of the Baltic basin, using geochemical (oxygen and carbon stable isotope, microprobe and bulk chemical analyses), optical, scanning electron and cathodoluminescence microscope methods. Carbonate cementation in the studied rocks is dolomitic and only rarely calcitic. Dolomite cementation occurs as laterally persistent zones, lenses or concretionary forms. Carbonate-cemented beds are the most common at the level of the maximum flooding surface and within the regressive system tract sediments. Levels of concretionary cementation with dolocrete features possibly mark the position of subaerial unconformities. Interpretation of dolomite ÎŽ13C and ÎŽ18O values suggests marine and/or mixed marine-meteoric origin of diagenetic fluids. Marine origin of fluids is interpreted in the diagenetic alteration of siliciclastic interlayers in the Leivu and Kernave sequences that were cemented penecontemporaneously with early diagenetic dolomitization of carbonate rocks. The siliciclastic intervals of the Vadja Formation and partly of the Leivu Formation were cemented somewhat later with dolomite precipitated from mixed marine-meteoric pore water. Carbon isotopic values suggest that carbon was mainly derived from marine sources, except in the PĂ€rnu Formation where negative ÎŽ13C values of dolomite indicate that carbon was derived from oxidation of organic materials

    Temporal evolution, petrography and composition of dolostones in the Upper Devonian Plavinas Regional Stage, southern Estonia and northern Latvia

    No full text
    The Upper Devonian Plavinas Regional Stage in southern Estonia and northern Latvia is represented by dolostones containing interlayers of dolomitic marlstones and limestones. Petrographic, cathodoluminescence, electron microprobe and isotope techniques were used to investigate diagenetic evolution of dolostones. The rock succession has been affected by multiple dia­genetic events. Based on petrographic and geochemical data, six dolomite textures were identified. The crystal size (5–1200 ÎŒm) and morphology of dolomites are variable. Commonly, dolomites are close to the stoichiometric composition, with low iron and manganese content. Their stable isotope composition (ÎŽ13C, ÎŽ18O) differs greatly from that of dolomite precipitated from Frasnian seawater. Dolomitization is more pronounced in the lower part of the studied sequence, in the Snetnaya Gora Formation and Lower Pskov unit where carbonates are completely dolomitized, whereas upwards in the section the dolomite content decreases. Voids and pores of the Lower Pskov unit are mainly open, but partly or completely occluded in the Upper Pskov unit. Void-filling dolomite has slightly and void-filling calcite notably depleted stable isotope signatures. Major dedolomitization and calcite-filling processes took place during the final uplift and emergence of the northern part of the Baltic basin, connected with the migration of karst-related meteoric waters into previously dolomitized horizons within carbonate rocks

    Oxygenated conditions in the aftermath of the Lomagundi-Jatuli Event:the carbon isotope and rare earth element signatures of the Paleoproterozoic Zaonega Formation, Russia

    No full text
    The c. 2.0 Ga Zaonega Formation of the Onega Basin (NW Russia) has been central in efforts to understand what led to the initial rise (Great Oxidation Event, GOE) and postulated fall in free atmospheric oxygen and associated high-amplitude carbon cycle excursions, the Lomagundi-Jatuli Event (LJE) and subsequent Shunga Event during Paleoproterozoic time. The Formation accumulated shortly after the LJE and encompasses both the recovery in the carbon cycle and hypothesised contraction of the oceanic oxidant pool. However, interpreting the correct environmental context recorded by geochemical signatures in the Zaonega rocks is difficult due to a complex depositional and diagenetic history. In order to robustly constrain that history, we undertook a multiproxy study (mineralogy, petrography, carbon isotope and rare earth element composition) of carbonate beds in the upper part of the Zaonega Formation recovered in the 102-m composite section of the OnZap drill-cores. Our findings differentiate primary environmental signatures from secondary overprinting and show that: (i) the best-preserved carbonate beds define an upwards increasing ή13Ccarb trend from c. -5.4‰ to near 0‰; and that (ii) large intra-bed ή13Ccarb variations reflect varying contributions of methanotrophic dissolved inorganic carbon (DIC) to the basinal DIC pool. Rare earth element and yttrium (REYSN) patterns confirm a marine origin of the carbonate beds whereas a consistent positive EuSN anomaly suggests a strong high temperature hydrothermal input during accumulation of the Zaonega Formation. Importantly, the presence of a negative CeSN anomaly in the REYSN pattern indicates an oxygenated atmosphere-ocean system shortly after the LJE and indicates that models invoking a fall in oxygen at that time require reassessment
    corecore