78 research outputs found

    A catalytic hollow fibre membrane reactor for combined steam methane reforming and water gas shift reaction

    Get PDF
    A catalytic hollow fibre membrane reactor (CHFMR) was developed in this study for combined steam methane reforming (SMR) and water gas shift (WGS) reaction. This is achieved by incorporating a Ni/SBA-15 catalyst into a plurality of micro-channels with open entrance from inner surface of Al2O3 hollow fibres, followed by coating of a 3.3μm Pd membrane on the outer surface of the hollow fibre using an electroless plating method. In addition to systematic characterizations of each reactor component, i.e. Ni/SBA-15 catalyst, micro-structured ceramic hollow fibre and Pd separating layer, the effect of how the reactor was assembled or fabricated on the catalytic performance was evaluated. Electroless plating of the Pd membrane impaired the catalytic performance of the deposited Ni/SBA-15 catalyst. Also, the over-removal of hydrogen from the reaction zone was considered as the main reason for the deactivation of the Ni-based catalyst. Instead of mitigating such deactivation using "compensating" hydrogen, starting the reaction at higher temperatures was found more efficient in improving the reactor performance, due to a better match between hydrogen production (from the reaction) and hydrogen removal (from the Pd membrane). An effective methane conversion of approximately 53%, a CO2 selectivity of 94% and a H2 recovery of 43% can be achieved at 560°C. In order for a more significant "shift" phenomenon, alternative methodology of fabricating the reactor and more coke resistant catalysts are recommended

    Inhibition of invasion and metastasis of human liver cancer HCCLM3 cells by portulacerebroside A

    Get PDF
    CONTEXT: Portulacerebroside A (PCA) is a novel cerebroside compound isolated from Portulaca oleracea L. (Portulacaceae), an edible and medicinal plant distributed in the temperate and tropical zones worldwide. OBJECTIVE: This study investigates the effects of PCA in human liver cancer HCCLM3 cells on metastasis and invasion. MATERIALS AND METHODS: After the cells were treated with PCA (2.5, 5, and 10 μg/ml) for 6, 12, 24, or 48 h, adhesion, transwell invasion, and scratch tests were conducted and cell functions were evaluated. Western blot and FQ-RT-PCR assays explored the mechanism of PCA-inhibited invasion and metastasis in the cells. RESULTS: The adhesion rate of the cells was suppressed at 0.5 h (79.4 ± 1.0, 68.7 ± 1.3, and 58.1 ± 1.3%, versus 100 ± 1.5% in the control), 1 h (78.2 ± 1.2, 70.9 ± 1.6, and 55.4 ± 1.9%, versus 100 ± 1.2% in the control), and 1.5 h (71.6 ± 1.1, 62.3 ± 0.9, and 50.4 ± 0.9%, versus 100 ± 1.1% in the control). The 24 h invasion ability was decreased (356.6 ± 11.2, 204.0 ± 17.6, and 113.0 ± 9.5%, versus 443.6 ± 15.4% in the control). The migration capability was also restrained by PCA for 24 h (324.8 ± 25.4, 250.4 ± 21.0, and 126.3 ± 10.1, versus 381.6 ± 30.6 in the control) and 48 h (470.3 ± 34.3, 404.0 ± 19.7, and 201.0 ± 15.4, versus 752.0 ± 63.6 in the control). There was an increase in the mRNA and protein expression levels of TIMP-2 and nm23-H1, inhibition in the mRNA expression of MTA1, MMP-2, and MMP-9, and suppression in the protein expression of MTA1, RhoA, Rac1/Cdc42, MMP-2, but not RhoC and MMP-9. CONCLUSION: PCA suppresses the invasion and metastasis of HCCLM3 cells possibly by modulation of the mRNA and protein expression of related parameters. This is the first study to reveal a new potential therapeutic application of PCA in antimetastatic therapy for liver cancer

    Progress towards a public chemogenomic set for protein kinases and a call for contributions

    Get PDF
    Protein kinases are highly tractable targets for drug discovery. However, the biological function and therapeutic potential of the majority of the 500+ human protein kinases remains unknown. We have developed physical and virtual collections of small molecule inhibitors, which we call chemogenomic sets, that are designed to inhibit the catalytic function of almost half the human protein kinases. In this manuscript we share our progress towards generation of a comprehensive kinase chemogenomic set (KCGS), release kinome profiling data of a large inhibitor set (Published Kinase Inhibitor Set 2 (PKIS2)), and outline a process through which the community can openly collaborate to create a KCGS that probes the full complement of human protein kinases
    • …
    corecore