276 research outputs found

    Cortical thickness, surface area and volume measures in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy

    Get PDF
    OBJECTIVE Parkinson's disease (PD), Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) are neurodegenerative diseases that can be difficult to distinguish clinically. The objective of the current study was to use surface-based analysis techniques to assess cortical thickness, surface area and grey matter volume to identify unique morphological patterns of cortical atrophy in PD, MSA and PSP and to relate these patterns of change to disease duration and clinical features. METHODS High resolution 3D T1-weighted MRI volumes were acquired from 14 PD patients, 18 MSA, 14 PSP and 19 healthy control participants. Cortical thickness, surface area and volume analyses were carried out using the automated surface-based analysis package FreeSurfer (version 5.1.0). Measures of disease severity and duration were assessed for correlation with cortical morphometric changes in each clinical group. RESULTS Results show that in PSP, widespread cortical thinning and volume loss occurs within the frontal lobe, particularly the superior frontal gyrus. In addition, PSP patients also displayed increased surface area in the pericalcarine. In comparison, PD and MSA did not display significant changes in cortical morphology. CONCLUSION These results demonstrate that patients with clinically established PSP exhibit distinct patterns of cortical atrophy, particularly affecting the frontal lobe. These results could be used in the future to develop a useful clinical application of MRI to distinguish PSP patients from PD and MSA patients

    Isolation of a bovine rotavirus with a "super-short" RNA electrophoretic pattern from a calf with diarrhea.

    Get PDF
    A rotavirus with a "super-short" RNA electropherotype was isolated from a calf with diarrhea and was designated VMRI strain. Segments 10 and 11 of this rotavirus migrated more slowly than did those of bovine rotavirus strains NCDV, B641, and B223. The electrophoretic pattern of the VMRI strain was similar to that reported for rotaviruses with super-short RNA electropherotypes from humans and rabbits. Northern (RNA) blot hybridization indicated that gene 11 of the VMRI strain was altered and migrated between gene segments 9 and 10. The subgroup of the VMRI strain was shown to be subgroup I. The VMRI strain of bovine rotavirus was neutralized by antisera containing polyclonal antibodies to rotavirus serotype 6 (bovine rotavirus serotype I) strains NCDV and B641 and by ascitic fluid containing monoclonal antibodies directed to VP7 of serotype 6 rotavirus. The VMRI strain was not neutralized by either polyclonal or monoclonal antibodies to strain B223 (bovine rotavirus serotype II). Collective data on the neutralization of the VMRI strain with monoclonal antibodies and polyclonal antibodies suggest that this virus is a member of the NCDV group (serotype 6) of rotaviruses (bovine rotavirus serotype I)

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Skill execution and sleep deprivation: effects of acute caffeine or creatine supplementation - a randomized placebo-controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigated the effects of sleep deprivation with or without acute supplementation of caffeine or creatine on the execution of a repeated rugby passing skill.</p> <p>Method</p> <p>Ten elite rugby players completed 10 trials on a simple rugby passing skill test (20 repeats per trial), following a period of familiarisation. The players had between 7-9 h sleep on 5 of these trials and between 3-5 h sleep (deprivation) on the other 5. At a time of 1.5 h before each trial, they undertook administration of either: placebo tablets, 50 or 100 mg/kg creatine, 1 or 5 mg/kg caffeine. Saliva was collected before each trial and assayed for salivary free cortisol and testosterone.</p> <p>Results</p> <p>Sleep deprivation with placebo application resulted in a significant fall in skill performance accuracy on both the dominant and non-dominant passing sides (p < 0.001). No fall in skill performance was seen with caffeine doses of 1 or 5 mg/kg, and the two doses were not significantly different in effect. Similarly, no deficit was seen with creatine administration at 50 or 100 mg/kg and the performance effects were not significantly different. Salivary testosterone was not affected by sleep deprivation, but trended higher with the 100 mg/kg creatine dose, compared to the placebo treatment (p = 0.067). Salivary cortisol was elevated (p = 0.001) with the 5 mg/kg dose of caffeine (vs. placebo).</p> <p>Conclusion</p> <p>Acute sleep deprivation affects performance of a simple repeat skill in elite athletes and this was ameliorated by a single dose of either caffeine or creatine. Acute creatine use may help to alleviate decrements in skill performance in situations of sleep deprivation, such as transmeridian travel, and caffeine at low doses appears as efficacious as higher doses, at alleviating sleep deprivation deficits in athletes with a history of low caffeine use. Both options are without the side effects of higher dose caffeine use.</p

    Homocysteine and other markers of cardiovascular risk during a manic episode in patients with bipolar disorder

    Get PDF
    Objective: To evaluate serum levels of different biomarkers associated with cardiovascular disease in patients with bipolar disorder (BD). Patients were prospectively evaluated in two separate instances: during acute mania and after remission of manic symptoms. All measurements were compared with those of healthy controls. Methods: The study included 30 patients with BD and 30 healthy controls, matched for gender and age. Biochemical parameters evaluated included homocysteine (Hcy), folic acid, vitamin B12, ferritin, creatine kinase (CK) and C-reactive protein (CRP). Results: Hcy levels were significantly higher in the BD patients, both during mania and after achieving euthymia. When Hcy was adjusted for body mass index, there was no significant difference between patients and controls. Ferritin was the only marker that showed a significant decrease during mania when compared to both euthymic patients and controls. There were no significant differences for folate, vitamin B12, CK and CRP. Conclusions: These findings do not show an association between alterations of markers of cardiovascular risk during manic episodes. Further studies are necessary to determine factors and mechanisms associated with cardiovascular risk in patients with BD

    Enterovirus D-68 Infection of Primary Rat Cortical Neurons: Entry, Replication, and Functional Consequences

    Get PDF
    Enterovirus D68 (EV-D68) is an emerging pathogen associated with mild to severe respiratory disease. Since 2014, EV-D68 is also linked to acute flaccid myelitis (AFM), causing paralysis and muscle weakness in children. However, it remains unclear whether this is due to an increased pathogenicity of contemporary EV-D68 clades or increased awareness and detection of this virus. Here, we describe an infection model of primary rat cortical neurons to study the entry, replication, and functional consequences of different EV-D68 strains, including historical and contemporary strains. We demonstrate that sialic acids are important (co)receptors for infection of both neurons and respiratory epithelial cells. Using a collection of glycoengineered isogenic HEK293 cell lines, we show that sialic acids on either N-glycans or glycosphingolipids can be used for infection. Additionally, we show that both excitatory glutamatergic and inhibitory GABA-ergic neurons are susceptible and permissive to historical and contemporary EV-D68 strains. EV-D68 infection of neurons leads to the reorganization of the Golgi-endomembranes forming replication organelles, first in the soma and later in the processes. Finally, we demonstrate that the spontaneous neuronal activity of EV-D68-infected neuronal network cultured on microelectrode arrays (MEA) is decreased, independent of the virus strain. Collectively, our findings provide novel insights into neurotropism and -pathology of different EV-D68 strains, and argue that it is unlikely that increased neurotropism is a recently acquired phenotype of a specific genetic lineage. IMPORTANCE Acute flaccid myelitis (AFM) is a serious neurological illness characterized by muscle weakness and paralysis in children. Since 2014, outbreaks of AFM have emerged worldwide, and they appear to be caused by nonpolio enteroviruses, particularly enterovirus-D68 (EV-D68), an unusual enterovirus that is known to mainly cause respiratory disease. It is unknown whether these outbreaks reflect a change of EV-D68 pathogenicity or are due to increased detection and awareness of this virus in recent years. To gain more insight herein, it is crucial to define how historical and circulating EV-D68 strains infect and replicate in neurons and how they affect their physiology. This study compares the entry and replication in neurons and the functional consequences on the neural network upon infection with an old "historical" strain and contemporary "circulating" strains of EV-D68

    Impact of Brain-Derived Neurotrophic Factor Val66Met Polymorphism on Cortical Thickness and Voxel-Based Morphometry in Healthy Chinese Young Adults

    Get PDF
    BACKGROUND: Following voxel-based morphometry (VBM), brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265) has been shown to affect human brain morphology in Caucasians. However, little is known about the specific role of the Met/Met genotype on brain structure. Moreover, the relationship between BDNF Val66Met polymorphism and Chinese brain morphology has not been studied. METHODOLOGY/PRINCIPAL FINDINGS: The present study investigated brain structural differences among three genotypes of BDNF (rs6265) for the first time in healthy young Chinese adults via cortical thickness analysis and VBM. Brain differences in Met carriers using another grouping method (combining Val/Met and Met/Met genotypes into a group of Met carriers as in most previous studies) were also investigated using VBM. Dual-approach analysis revealed less gray matter (GM) in the frontal, temporal, cingulate and insular cortices in the Met/Met group compared with the Val/Val group (corrected, P<0.05). Areas with less GM in the Val/Met group were included in the Met/Met group. VBM differences in Met carriers were only found in the middle cingulate cortex. CONCLUSIONS/SIGNIFICANCE: The current results indicated a unique pattern of brain morphologic differences caused by BDNF (rs6265) in young Chinese adults, in which the Met/Met genotype markedly affected the frontal, temporal, cingulate, and insular regions. The grouping method with Met carriers was not suitable to detect the genetic effect of BDNF Val66Met polymorphism on brain morphology, at least in the Chinese population, because it may hide some specific roles of Met/Met and Val/Met genotypes on brain structure

    Consensus Paper: Radiological Biomarkers of Cerebellar Diseases

    Get PDF
    Hereditary and sporadic cerebellar ataxias represent a vast and still growing group of diseases whose diagnosis and differentiation cannot only rely on clinical evaluation. Brain imaging including magnetic resonance (MR) and nuclear medicine techniques allows for characterization of structural and functional abnormalities underlying symptomatic ataxias. These methods thus constitute a potential source of radiological biomarkers, which could be used to identify these diseases and differentiate subgroups of them, and to assess their severity and their evolution. Such biomarkers mainly comprise qualitative and quantitative data obtained from MR including proton spectroscopy, diffusion imaging, tractography, voxel-based morphometry, functional imaging during task execution or in a resting state, and from SPETC and PET with several radiotracers. In the current article, we aim to illustrate briefly some applications of these neuroimaging tools to evaluation of cerebellar disorders such as inherited cerebellar ataxia, fetal developmental malformations, and immune-mediated cerebellar diseases and of neurodegenerative or early-developing diseases, such as dementia and autism in which cerebellar involvement is an emerging feature. Although these radiological biomarkers appear promising and helpful to better understand ataxia-related anatomical and physiological impairments, to date, very few of them have turned out to be specific for a given ataxia with atrophy of the cerebellar system being the main and the most usual alteration being observed. Consequently, much remains to be done to establish sensitivity, specificity, and reproducibility of available MR and nuclear medicine features as diagnostic, progression and surrogate biomarkers in clinical routine
    corecore