262 research outputs found
Optimizing Wearable Assistive Devices with Neuromuscular Models and Optimal Control
The coupling of human movement dynamics with the function and design of wearable assistive devices is vital to better understand the interaction between the two. Advanced neuromuscular models and optimal control formulations provide the possibility to study and improve this interaction. In addition, optimal control can also be used to generate predictive simulations that generate novel movements for the human model under varying optimization criterion
Nanostructured exchange coupled hard / soft composites: from the local magnetization profile to an extended 3D simple model
In nanocomposite magnetic materials the exchange coupling between phases
plays a central role in the determination of the extrinsic magnetic properties
of the material: coercive field, remanence magnetization. Exchange coupling is
therefore of crucial importance in composite systems made of magnetically hard
and soft grains or in partially crystallized media including nanosized
crystallites in a soft matrix. It has been shown also to be a key point in the
control of stratified hard / soft media coercive field in the research for
optimized recording media. A signature of the exchange coupling due to the
nanostructure is generally obtained on the magnetization curve with a
plateau characteristic of the domain wall compression at the hard/soft
interface ending at the depinning of the wall inside the hard phase. This
compression / depinning behavior is clearly evidenced through one dimensional
description of the interface, which is rigorously possible only in stratified
media. Starting from a local description of the hard/soft interface in a model
for nanocomposite system we show that one can extend this kind of behavior for
system of hard crystallites embedded in a soft matrix.Comment: 18 pages, 8 figures. To be published in the Journal of Magnetism and
Magnetic Materials. (To be found at
http://www.sciencedirect.com/science/journal/03048853
Tactile Sensors Based on Conductive Polymers
This paper presents results from a selection of tactile sensors that have been designed and fabricated. These sensors are based on a common approach that consists in placing a sheet of piezoresistive material on the top of a set of electrodes. We use a thin film of conductive polymer as the piezoresistive mateÂŹrial. Specifically, a conductive water-based ink of this polymer is deposited by spin coating on a flexible plastic sheet, giving it a smooth, homogeneous and conducting thin film. The main interest in this procedure is that it is cheap and it allows the fabrication of flexible and low cost tactile sensors. In this work we present results from sensors made using two technologies. Firstly, we have used a flexible Printed Circuit Board (PCB) technology to fabricate the set of electrodes and addressing tracks. The result is a simple, flexible tactile sensor. In addition to these sensors on PCB, we have proposed, designed and fabricated sensors with screen printing technology. In this case, the set of electrodes and addressing tracks are made by printing an ink based on silver nanoparticles. The intense characterization provides us insights into the design of these tactile sensors.This work has been partially funded by the spanish government under contract TEC2006-12376-C02
Alterations in auditory brain stem response distinguish occasional and constant tinnitus
BACKGROUND. The heterogeneity of tinnitus is thought to underlie the lack of objective diagnostic measures.
METHODS. Longitudinal data from 20,349 participants of the Swedish Longitudinal Occupational Survey of Health (SLOSH) cohort from 2008 to 2018 were used to understand the dynamics of transition between occasional and constant tinnitus. The second part of the study included electrophysiological data from 405 participants of the Swedish Tinnitus Outreach Project (STOP) cohort.
RESULTS. We determined that with increasing frequency of the occasional perception of self-reported tinnitus, the odds of reporting constant tinnitus after 2 years increases from 5.62 (95% CI, 4.83â6.55) for previous tinnitus (sometimes) to 29.74 (4.82â6.55) for previous tinnitus (often). When previous tinnitus was reported to be constant, the odds of reporting it as constant after 2 years rose to 603.02 (524.74â692.98), suggesting that once transitioned to constant tinnitus, the likelihood of tinnitus to persist was much greater. Auditory brain stem responses (ABRs) from subjects reporting nontinnitus (controls), occasional tinnitus, and constant tinnitus show that wave V latency increased in constant tinnitus when compared with occasional tinnitus or nontinnitus. The ABR from occasional tinnitus was indistinguishable from that of the nontinnitus controls.
CONCLUSIONS. Our results support the hypothesis that the transition from occasional to constant tinnitus is accompanied by neuronal changes in the midbrain leading to a persisting tinnitus, which is then less likely to remit.publishedVersio
Annealing-Dependent Magnetic Depth Profile in Ga[1-x]Mn[x]As
We have studied the depth-dependent magnetic and structural properties of
as-grown and optimally annealed Ga[1-x]Mn[x]As films using polarized neutron
reflectometry. In addition to increasing total magnetization, the annealing
process was observed to produce a significantly more homogeneous distribution
of the magnetization. This difference in the films is attributed to the
redistribution of Mn at interstitial sites during the annealing process. Also,
we have seen evidence of significant magnetization depletion at the surface of
both as-grown and annealed films.Comment: 5 pages, 3 figure
Relaxation Methods for Mixed-Integer Optimal Control of Partial Differential Equations
We consider integer-restricted optimal control of systems governed by
abstract semilinear evolution equations. This includes the problem of optimal
control design for certain distributed parameter systems endowed with multiple
actuators, where the task is to minimize costs associated with the dynamics of
the system by choosing, for each instant in time, one of the actuators together
with ordinary controls. We consider relaxation techniques that are already used
successfully for mixed-integer optimal control of ordinary differential
equations. Our analysis yields sufficient conditions such that the optimal
value and the optimal state of the relaxed problem can be approximated with
arbitrary precision by a control satisfying the integer restrictions. The
results are obtained by semigroup theory methods. The approach is constructive
and gives rise to a numerical method. We supplement the analysis with numerical
experiments
Synthesis of Alkaline Earth Diazenides MAEN2 (MAE = Ca, Sr, Ba) by Controlled Thermal Decomposition of Azides under High Pressure
The alkaline earth diazenides MAEN2 with MAE = Ca, Sr and Ba were synthesized by a novel synthetic approach, namely, a controlled decomposition of the corresponding azides in a multianvil press at highpressure/ high-temperature conditions. The crystal structure of hitherto unknown calcium diazenide (space group I4/mmm (no. 139), a = 3.5747(6) Ă
, c = 5.9844(9) Ă
, Z = 2, wRp = 0.078) was solved and refined on the basis of powder X-ray diffraction data as well as that of SrN2 and BaN2. Accordingly, CaN2 is isotypic with SrN2 (space group I4/mmm (no. 139), a = 3.8054(2) Ă
, c = 6.8961(4) Ă
, Z = 2, wRp = 0.057) and the corresponding alkaline earth acetylenides (MAEC2) crystallizing in a tetragonally distorted NaCl structure type. In accordance with literature data, BaN2 adopts a more distorted structure in space group C2/c (no. 15) with a = 7.1608(4) Ă
, b = 4.3776(3) Ă
, c = 7.2188(4) Ă
, ÎČ = 104.9679(33)°, Z = 4 and wRp = 0.049). The NâN bond lengths of 1.202(4) Ă
in CaN2 (SrN2 1.239(4) Ă
, BaN2 1.23(2) Ă
) correspond well with a double-bonded dinitrogen unit confirming a diazenide ion [N2]2â. Temperature-dependent in situ powder X-ray diffractometry of the three alkaline earth diazenides resulted in formation of the corresponding subnitrides MAE2N (MAE = Ca, Sr, Ba) at higher temperatures. FTIR spectroscopy revealed a band at about 1380 cmâ1 assigned to the NâN stretching vibration of the diazenide unit. Electronic structure calculations support the metallic character of alkaline earth diazenides
- âŠ