643 research outputs found

    Inhomogeneous non-Gaussianity

    Get PDF
    We propose a method to probe higher-order correlators of the primordial density field through the inhomogeneity of local non-Gaussian parameters, such as f_NL, measured within smaller patches of the sky. Correlators between n-point functions measured in one patch of the sky and k-point functions measured in another patch depend upon the (n+k)-point functions over the entire sky. The inhomogeneity of non-Gaussian parameters may be a feasible way to detect or constrain higher-order correlators in local models of non-Gaussianity, as well as to distinguish between single and multiple-source scenarios for generating the primordial density perturbation, and more generally to probe the details of inflationary physics.Comment: 16 pages, 2 figures; v2: Minor changes and references added. Matches the published versio

    Non-Gaussianity from Symmetry

    Full text link
    We point out that a light scalar field fluctuating around a symmetry-enhaced point can generate large non-Gaussianity in density fluctuations. We name such a particle as an "ungaussiton", a scalar field dominantly produced by the quantum fluctuations,generating sizable non-Gaussianity in the density fluctuations. We derive a consistency relation between the bispectrum and the trispectrum, tau_NL = 10^3 f_NL^(4/3), which can be extended to arbitrary high order correlation functions. If such a relation is confirmed by future observations, it will strongly support this mechanism.Comment: 26 pages, 1 figure;v2 discussion and references added. To appear in JCA

    Non-Gaussianity from isocurvature perturbations

    Full text link
    We develop a formalism to study non-Gaussianity in both curvature and isocurvature perturbations. It is shown that non-Gaussianity in the isocurvature perturbation between dark matter and photons leaves distinct signatures in the CMB temperature fluctuations, which may be confirmed in future experiments, or possibly, even in the currently available observational data. As an explicit example, we consider the QCD axion and show that it can actually induce sizable non-Gaussianity for the inflationary scale, H_{inf} = O(10^9 - 10^{11})GeV.Comment: 24 pages, 6 figures; references added; version to appear in JCA

    Characterization of the QUartz Photon Intensifying Detector (QUPID) for Noble Liquid Detectors

    Full text link
    Dark Matter and Double Beta Decay experiments require extremely low radioactivity within the detector materials. For this purpose, the University of California, Los Angeles and Hamamatsu Photonics have developed the QUartz Photon Intensifying Detector (QUPID), an ultra-low background photodetector based on the Hybrid Avalanche Photo Diode (HAPD) and entirely made of ultraclean synthetic fused silica. In this work we present the basic concept of the QUPID and the testing measurements on QUPIDs from the first production line. Screening of radioactivity at the Gator facility in the Laboratori Nazionali del Gran Sasso has shown that the QUPIDs safely fulfill the low radioactive contamination requirements for the next generation zero background experiments set by Monte Carlo simulations. The quantum efficiency of the QUPID at room temperature is > 30% at the xenon scintillation wavelength. At low temperatures, the QUPID shows a leakage current less than 1 nA and a global gain of 10^5. In these conditions, the photocathode and the anode show > 95% linearity up to 1 uA for the cathode and 3 mA for the anode. The photocathode and collection efficiency are uniform to 80% over the entire surface. In parallel with single photon counting capabilities, the QUPIDs have a good timing response: 1.8 +/- 0.1 ns rise time, 2.5 +/- 0.2 ns fall time, 4.20 +/- 0.05 ns pulse width, and 160 +/- 30 ps transit time spread. The QUPIDs have also been tested in a liquid xenon environment, and scintillation light from 57Co and 210Po radioactive sources were observed.Comment: 15 pages, 22 figure

    Rolling Closed String Tachyons and the Big Crunch

    Full text link
    We study the low-energy effective field equations that couple gravity, the dilaton, and the bulk closed string tachyon of bosonic closed string theory. We establish that whenever the tachyon induces the rolling process, the string metric remains fixed while the dilaton rolls to strong coupling. For negative definite potentials we show that this results in an Einstein metric that crunches the universe in finite time. This behavior is shown to be rather generic even if the potentials are not negative definite. The solutions are reminiscent of those in the collapse stage of a cyclic universe cosmology where scalar field potentials with negative energies play a central role.Comment: 13 pages, 2 figures, LaTeX. Replaced version: one reference adde

    Non-linear isocurvature perturbations and non-Gaussianities

    Get PDF
    We study non-linear primordial adiabatic and isocurvature perturbations and their non-Gaussianity. After giving a general formulation in the context of an extended delta N-formalism, we analyse in detail two illustrative examples. The first is a mixed curvaton-inflaton scenario in which fluctuations of both the inflaton and a curvaton (a light isocurvature field during inflation) contribute to the primordial density perturbation. The second example is that of double inflation involving two decoupled massive scalar fields during inflation. In the mixed curvaton-inflaton scenario we find that the bispectrum of primordial isocurvature perturbations may be large and comparable to the bispectrum of adiabatic curvature perturbations.Comment: 24 pages, typos corrected, references adde

    Ricci flows and expansion in axion-dilaton cosmology

    Full text link
    We study renormalization-group flows by deforming a class of conformal sigma-models. We consider overall scale factor perturbation of Einstein spaces as well as more general anisotropic deformations of three-spheres. At leading order in alpha, renormalization-group equations turn out to be Ricci flows. In the three-sphere background, the latter is the Halphen system, which is exactly solvable in terms of modular forms. We also analyze time-dependent deformations of these systems supplemented with an extra time coordinate and time-dependent dilaton. In some regimes time evolution is identified with renormalization-group flow and time coordinate can appear as Liouville field. The resulting space-time interpretation is that of a homogeneous isotropic Friedmann-Robertson-Walker universe in axion-dilaton cosmology. We find as general behaviour the superposition of a big-bang (polynomial) expansion with a finite number of oscillations at early times. Any initial anisotropy disappears during the evolution.Comment: 22 page

    Composite fluxbranes with general intersections

    Get PDF
    Generalized composite fluxbrane solutions for a wide class of intersection rules are obtained. The solutions are defined on a manifold which contains a product of n Ricci-flat spaces M_1 x ... x M_n with 1-dimensional M_1. They are defined up to a set of functions H_s obeying non-linear differential equations equivalent to Toda-type equations with certain boundary conditions imposed. A conjecture on polynomial structure of governing functions H_s for intersections related to semisimple Lie algebras is suggested. This conjecture is valid for Lie algebras: A_m, C_{m+1}, m > 0. For simple Lie algebras the powers of polynomials coincide with the components of the dual Weyl vector in the basis of simple roots. Explicit formulas for A_1 + ... + A_1 (orthogonal), "block-ortogonal" and A_2 solutions are obtained. Certain examples of solutions in D = 11 and D =10 (II A) supergravities (e.g. with A_2 intersection rules) and Kaluza-Klein dyonic A_2 flux tube, are considered.Comment: 19 pages, Latex, 1 reference (on a pioneering paper of Gibbons and Wiltshire) and two missing relations are added Published: Class. Quantum Grav. 19 (2002) 3033-304

    A non-Gaussian landscape

    Get PDF
    Primordial perturbations with wavelengths greater than the observable universe shift the effective background fields in our observable patch from their global averages over the inflating space. This leads to a landscape picture where the properties of our observable patch depend on its location and may significantly differ from the expectation values predicted by the underlying fundamental inflationary model. We show that if multiple fields are present during inflation, this may happen even if our horizon exit would be preceded by only a few e-foldings of inflation. Non-Gaussian statistics are especially affected: for example models of local non-Gaussianity predicting |f_NL|>> 10 over the entire inflating volume can have a probability up to a few tens of percent to generate a non-detectable bispectrum in our observable patch |fNL^{obs.}|<10. In this work we establish systematic connections between the observable local properties of primordial perturbations and the global properties of the inflating space which reflect the underlying high energy physics. We study in detail the implications of both a detection and non-detection of primordial non-Gaussianity by Planck, and discover novel ways of characterising the naturalness of different observational configurations

    Exact Results in ABJM Theory from Topological Strings

    Full text link
    Recently, Kapustin, Willett and Yaakov have found, by using localization techniques, that vacuum expectation values of Wilson loops in ABJM theory can be calculated with a matrix model. We show that this matrix model is closely related to Chern-Simons theory on a lens space with a gauge supergroup. This theory has a topological string large N dual, and this makes possible to solve the matrix model exactly in the large N expansion. In particular, we find the exact expression for the vacuum expectation value of a 1/6 BPS Wilson loop in the ABJM theory, as a function of the 't Hooft parameters, and in the planar limit. This expression gives an exact interpolating function between the weak and the strong coupling regimes. The behavior at strong coupling is in precise agreement with the prediction of the AdS string dual. We also give explicit results for the 1/2 BPS Wilson loop recently constructed by Drukker and TrancanelliComment: 18 pages, two figures, small misprints corrected and references added, final version to appear in JHE
    corecore