235 research outputs found
The Apple Falls Increasingly Far: Parent-Child Correlation in Schooling and the Growth of Post-Secondary Education in Switzerland
We analyze the completed highest education degree of two birth cohorts (1934-1943 and 1964-1973) in Switzerland, using data from the 1999 Swiss Household Panel. The fraction of tertiary graduates has increased over time, for women more so than for men. Educational attainment depends strongly on the educational attainment of parents. For women, we find that a substantial fraction of the overall increase in participation in tertiary education can be explained by the narrowing gap in participation rates between women with lowly educated parents and women with highly educated parents. Logit models show that financial problems have become more important as an impediment for higher education
Split or Steal? Cooperative Behavior When the Stakes Are Large
We examine cooperative behavior when large sums of money are at stake, using data from the television game show Golden Balls. At the end of each episode, contestants play a variant on the classic prisoner's dilemma for large and widely ranging stakes averaging over $20,000. Cooperation is surprisingly high for amounts that would normally be considered consequential but look tiny in their current context, what we call a βbig peanutsβ phenomenon. Utilizing the prior interaction among contestants, we find evidence that people have reciprocal preferences. Surprisingly, there is little support for conditional cooperation in our sample. That is, players do not seem to be more likely to cooperate if their opponent might be expected to cooperate. Further, we replicate earlier findings that males are less cooperative than females, but this gender effect reverses for older contestants because men become increasingly cooperative as their age increases
Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models
Both community ecology and conservation biology seek further understanding of
factors governing the advance of an invasive species. We model biological
invasion as an individual-based, stochastic process on a two-dimensional
landscape. An ecologically superior invader and a resident species compete for
space preemptively. Our general model includes the basic contact process and a
variant of the Eden model as special cases. We employ the concept of a
"roughened" front to quantify effects of discreteness and stochasticity on
invasion; we emphasize the probability distribution of the front-runner's
relative position. That is, we analyze the location of the most advanced
invader as the extreme deviation about the front's mean position. We find that
a class of models with different assumptions about neighborhood interactions
exhibit universal characteristics. That is, key features of the invasion
dynamics span a class of models, independently of locally detailed demographic
rules. Our results integrate theories of invasive spatial growth and generate
novel hypotheses linking habitat or landscape size (length of the invading
front) to invasion velocity, and to the relative position of the most advanced
invader.Comment: The original publication is available at
www.springerlink.com/content/8528v8563r7u2742
Experimental Evidence for Reduced Rodent Diversity Causing Increased Hantavirus Prevalence
Emerging and re-emerging infectious diseases have become a major global environmental problem with important public health, economic, and political consequences. The etiologic agents of most emerging infectious diseases are zoonotic, and anthropogenic environmental changes that affect wildlife communities are increasingly implicated in disease emergence and spread. Although increased disease incidence has been correlated with biodiversity loss for several zoonoses, experimental tests in these systems are lacking. We manipulated small-mammal biodiversity by removing non-reservoir species in replicated field plots in Panama, where zoonotic hantaviruses are endemic. Both infection prevalence of hantaviruses in wild reservoir (rodent) populations and reservoir population density increased where small-mammal species diversity was reduced. Regardless of other variables that affect the prevalence of directly transmitted infections in natural communities, high biodiversity is important in reducing transmission of zoonotic pathogens among wildlife hosts. Our results have wide applications in both conservation biology and infectious disease management
Genetic analysis of scattered populations of the Indian eri silkworm, Samia cynthia ricini Donovan: Differentiation of subpopulations
Deforestation and exploitation has led to the fragmentation of habitats and scattering of populations of the economically important eri silkworm, Samia cynthia ricini, in north-east India. Genetic analysis of 15 eri populations, using ISSR markers, showed 98% inter-population, and 23% to 58% intra-population polymorphism. Neiβs genetic distance between populations increased significantly with altitude (R2 = 0.71) and geographic distance (R2 = 0.78). On the dendrogram, the lower and upper Assam populations were clustered separately, with intermediate grouping of those from Barpathar and Chuchuyimlang, consistent with geographical distribution. The Neiβs gene diversity index was 0.350 in total populations and 0.121 in subpopulations. The genetic differentiation estimate (Gst) was 0.276 among scattered populations. Neutrality tests showed deviation of 118 loci from Hardy-Weinberg equilibrium. The number of loci that deviated from neutrality increased with altitude (R2 = 0.63). Test of linkage disequilibrium showed greater contribution of variance among eri subpopulations to total variance. Dβ2IS exceeded Dβ2ST, showed significant contribution of random genetic drift to the increase in variance of disequilibrium in subpopulations. In the Lakhimpur population, the peripheral part was separated from the core by a genetic distance of 0.260. Patchy habitats promoted low genetic variability, high linkage disequilibrium and colonization by new subpopulations. Increased gene flow and habitat-area expansion are required to maintain higher genetic variability and conservation of the original S. c. ricini gene pool
Serpentine Soils Do Not Limit Mycorrhizal Fungal Diversity
Background: Physiologically stressful environments tend to host depauperate and specialized biological communities. Serpentine soils exemplify this phenomenon by imposing well-known constraints on plants; however, their effect on other organisms is still poorly understood. Methodology/Principal Findings: We used a combination of field and molecular approaches to test the hypothesis that serpentine fungal communities are species-poor and specialized. We conducted surveys of ectomycorrhizal fungal diversity from adjacent serpentine and non-serpentine sites, described fungal communities using nrDNA Internal Transcribed Spacer (ITS) fragment and sequence analyses, and compared their phylogenetic community structure. Although we detected low fungal overlap across the two habitats, we found serpentine soils to support rich fungal communities that include representatives from all major fungal lineages. We failed to detect the phylogenetic signature of endemic clades that would result from specialization and adaptive radiation within this habitat. Conclusions/Significance: Our results indicate that serpentine soils do not constitute an extreme environment for ectomycorrhizal fungi, and raise important questions about the role of symbioses in edaphic tolerance and the maintenanc
Distribution of the anther-smut pathogen Microbotryum on species of the Caryophyllaceae
ArtΓculo de publicaciΓ³n ISIUnderstanding disease distributions is of fundamental and applied importance,
yet few studies benefit from integrating broad sampling with ecological and phylogenetic
data. Here, anther-smut disease, caused by the fungus Microbotryum,
was assessed using herbarium specimens of Silene and allied genera of the
Caryophyllaceae.
β’ A total of 42 000 herbarium specimens were examined, and plant geographical
distributions and morphological and life history characteristics were tested as correlates
of disease occurrence. Phylogenetic comparative methods were used to
determine the association between disease and plant life-span.
β’ Disease was found on 391 herbarium specimens from 114 species and all continents
with native Silene. Anther smut occurred exclusively on perennial plants,
consistent with the pathogen requiring living hosts to overwinter. The disease was
estimated to occur in 80% of perennial species of Silene and allied genera. The
correlation between plant life-span and disease was highly significant while
controlling for the plant phylogeny, but the disease was not correlated with
differences in floral morphology.
β’ Using resources available in natural history collections, this study illustrates how
disease distribution can be determined, not by restriction to a clade of susceptible
hosts or to a limited geographical region, but by association with host life-span, a
trait that has undergone frequent evolutionary transitions.We acknowledge grant support from the John
Simon Guggenheim Memorial Foundation and the
National Science Foundation (DEB-0747222) to MEH,
the National Science Foundation Minority Postdoctoral
Fellowship (DBI-0706721) to JIMA, University of Chile
awards PFB-23 and ICM P05-002 to MTKA, and The
Swedish Research Council for Environment, Agricultural
Sciences and Spatial Planning (FORMAS) support to BO,
and Royal Society Incoming Fellowship and Center for
Infection, Immunity, and Evolution Advanced Fellowship
to ABP
Glacial Refugia in Pathogens: European Genetic Structure of Anther Smut Pathogens on Silene latifolia and Silene dioica
Climate warming is predicted to increase the frequency of invasions by pathogens and to cause the large-scale redistribution of native host species, with dramatic consequences on the health of domesticated and wild populations of plants and animals. The study of historic range shifts in response to climate change, such as during interglacial cycles, can help in the prediction of the routes and dynamics of infectious diseases during the impending ecosystem changes. Here we studied the population structure in Europe of two Microbotryum species causing anther smut disease on the plants Silene latifolia and Silene dioica. Clustering analyses revealed the existence of genetically distinct groups for the pathogen on S. latifolia, providing a clear-cut example of European phylogeography reflecting recolonization from southern refugia after glaciation. The pathogen genetic structure was congruent with the genetic structure of its host species S. latifolia, suggesting dependence of the migration pathway of the anther smut fungus on its host. The fungus, however, appeared to have persisted in more numerous and smaller refugia than its host and to have experienced fewer events of large-scale dispersal. The anther smut pathogen on S. dioica also showed a strong phylogeographic structure that might be related to more northern glacial refugia. Differences in host ecology probably played a role in these differences in the pathogen population structure. Very high selfing rates were inferred in both fungal species, explaining the low levels of admixture between the genetic clusters. The systems studied here indicate that migration patterns caused by climate change can be expected to include pathogen invasions that follow the redistribution of their host species at continental scales, but also that the recolonization by pathogens is not simply a mirror of their hosts, even for obligate biotrophs, and that the ecology of hosts and pathogen mating systems likely affects recolonization patterns
Effects of Cu/Zn Superoxide Dismutase (sod1) Genotype and Genetic Background on Growth, Reproduction and Defense in Biomphalaria glabrata
Resistance of the snail Biomphalaria glabrata to the trematode Schistosoma mansoni is correlated with allelic variation at copper-zinc superoxide dismutase (sod1). We tested whether there is a fitness cost associated with carrying the most resistant allele in three outbred laboratory populations of snails. These three populations were derived from the same base population, but differed in average resistance. Under controlled laboratory conditions we found no cost of carrying the most resistant allele in terms of fecundity, and a possible advantage in terms of growth and mortality. These results suggest that it might be possible to drive resistant alleles of sod1 into natural populations of the snail vector for the purpose of controlling transmission of S. mansoni. However, we did observe a strong effect of genetic background on the association between sod1 genotype and resistance. sod1 genotype explained substantial variance in resistance among individuals in the most resistant genetic background, but had little effect in the least resistant genetic background. Thus, epistatic interactions with other loci may be as important a consideration as costs of resistance in the use of sod1 for vector manipulation
- β¦