90 research outputs found
Silica-based monolithic sensing plates for waveguide-mode sensors
We developed a monolithic sensing plate for a waveguide-mode sensor. The plate consists of a SiO2 glass substrate and a thin silicon layer the surface of which is thermally oxidized to form a SiO2 glass waveguide. We confirmed that the sensing plate is suitable for high-sensitivity detection of molecular adsorption at the waveguide surface. In addition, a significant enhancement of the sensitivity of the sensor was achieved by perforating the waveguide with holes with diameters of a few tens of nanometers by selective etching of latent tracks created by swift heavy-ion irradiation. Possible strategies for optimizing the plate are discussed
Monitoring of Crystallization Process in Solution-Processed Pentacene Thin Films by Chemical Conversion Reactions
Solution-processable organic semiconductors having bulky substituent groups on the π-conjugated skeleton are rapidly gaining attention for their potential applications to large-area electronics. While the substituent groups contribute to the good solubility in organic solvents, they give rise to hopping sites in a thin film, affecting adversely the charge-carrier transport. As an alternative material, a solvent-soluble precursor compound with thermally cleavable functional groups is promising, which can be converted by heat treatment into a thin film to generate the desired material consisting solely of conjugated systems. This precursor approach is practically applied to various thin-film-based devices. The overall process of the thin film growth, however, remains unrevealed. In the present study, solution-processed pentacene thin films are prepared from a thermally convertible precursor, and the structural evolution during the chemical conversion reaction has been revealed by a combination of cutting-edge analytical tools of two-dimensional X-ray diffraction (2D-GIXD) and p-polarized multiple-angle incidence resolution spectrometry (pMAIRS). The highlight is that pentacene is crystallized in a stepwise manner in the thermally converted films, which is substantially different from a typical growth process. In addition, influences of the oxidation reaction of pentacene on the molecular arrangement are also discussed quantitatively. This study provides a fundamental schematic of thin films grown by the precursor method
Scale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics
A continuous time model for multiagent systems governed by reinforcement
learning with scale-free memory is developed. The agents are assumed to act
independently of one another in optimizing their choice of possible actions via
trial-and-error search. To gain awareness about the action value the agents
accumulate in their memory the rewards obtained from taking a specific action
at each moment of time. The contribution of the rewards in the past to the
agent current perception of action value is described by an integral operator
with a power-law kernel. Finally a fractional differential equation governing
the system dynamics is obtained. The agents are considered to interact with one
another implicitly via the reward of one agent depending on the choice of the
other agents. The pairwise interaction model is adopted to describe this
effect. As a specific example of systems with non-transitive interactions, a
two agent and three agent systems of the rock-paper-scissors type are analyzed
in detail, including the stability analysis and numerical simulation.
Scale-free memory is demonstrated to cause complex dynamics of the systems at
hand. In particular, it is shown that there can be simultaneously two modes of
the system instability undergoing subcritical and supercritical bifurcation,
with the latter one exhibiting anomalous oscillations with the amplitude and
period growing with time. Besides, the instability onset via this supercritical
mode may be regarded as "altruism self-organization". For the three agent
system the instability dynamics is found to be rather irregular and can be
composed of alternate fragments of oscillations different in their properties.Comment: 17 pages, 7 figur
Functional Evolution of Duplicated Odorant-Binding Protein Genes, Obp57d and Obp57e, in Drosophila
Odorant-binding proteins (OBPs) are extracellular proteins found in insect chemosensilla, where they participate in the sensing of odors, tastes, and pheromones. Although a large number of OBP genes have been identified in insect genomes, their molecular functions and biological roles have been clarified in limited cases. Two OBP genes, Obp57d and Obp57e, were involved in the evolution of host-plant preference in Drosophila sechellia. Comparative analyses of the Obp57d/e genomic sequences from 27 closely related species suggested that the two genes arose by tandem gene duplication and functionally diverged from each other. In this study, the functional evolution of Obp57d and Obp57e was examined by in vitro binding assays using recombinant proteins synthesized in a bacterial system. Compared to the ancestral Dpse\OBP57de, Dmel\OBP57d was more specialized to tridecanoic acid while Dmel\OBP57e was generalized regarding their binding affinity, suggesting that the two OBP genes underwent subfunctionalization and neofunctionalization. A behavioral analysis using knockout flies supported that the biological role is different between OBP57d and OBP57e in vivo. Site-directed mutagenesis of the evolutionarily conserved amino acids revealed that these residues play an important role in protein folding. These findings provide a clue to understanding how the repertoire of OBP genes is maintained in a genome under natural selection
Hedonic Taste in Drosophila Revealed by Olfactory Receptors Expressed in Taste Neurons
Taste and olfaction are each tuned to a unique set of chemicals in the outside world, and their corresponding sensory spaces are mapped in different areas in the brain. This dichotomy matches categories of receptors detecting molecules either in the gaseous or in the liquid phase in terrestrial animals. However, in Drosophila olfactory and gustatory neurons express receptors which belong to the same family of 7-transmembrane domain proteins. Striking overlaps exist in their sequence structure and in their expression pattern, suggesting that there might be some functional commonalities between them. In this work, we tested the assumption that Drosophila olfactory receptor proteins are compatible with taste neurons by ectopically expressing an olfactory receptor (OR22a and OR83b) for which ligands are known. Using electrophysiological recordings, we show that the transformed taste neurons are excited by odor ligands as by their cognate tastants. The wiring of these neurons to the brain seems unchanged and no additional connections to the antennal lobe were detected. The odor ligands detected by the olfactory receptor acquire a new hedonic value, inducing appetitive or aversive behaviors depending on the categories of taste neurons in which they are expressed i.e. sugar- or bitter-sensing cells expressing either Gr5a or Gr66a receptors. Taste neurons expressing ectopic olfactory receptors can sense odors at close range either in the aerial phase or by contact, in a lipophilic phase. The responses of the transformed taste neurons to the odorant are similar to those obtained with tastants. The hedonic value attributed to tastants is directly linked to the taste neurons in which their receptors are expressed
TRPA1 is essential for the vascular response to environmental cold exposure
This work was supported by the British Heart Foundation and a Capacity Building Award in Integrative Mammalian Biology. It was also supported by Arthritis Research UK and XK is supported by a British Pharmacological Society AJ Clark studentship
Dopamine Modulates the Rest Period Length without Perturbation of Its Power Law Distribution in Drosophila melanogaster
We analyzed the effects of dopamine signaling on the temporal organization of rest and activity in Drosophila melanogaster. Locomotor behaviors were recorded using a video-monitoring system, and the amounts of movements were quantified by using an image processing program. We, first, confirmed that rest bout durations followed long-tailed (i.e., power-law) distributions, whereas activity bout durations did not with a strict method described by Clauset et al. We also studied the effects of circadian rhythm and ambient temperature on rest bouts and activity bouts. The fraction of activity significantly increased during subjective day and at high temperature, but the power-law exponent of the rest bout distribution was not affected. The reduction in rest was realized by reduction in long rest bouts. The distribution of activity bouts did not change drastically under the above mentioned conditions. We then assessed the effects of dopamine. The distribution of rest bouts became less long-tailed and the time spent in activity significantly increased after the augmentation of dopamine signaling. Administration of a dopamine biosynthesis inhibitor yielded the opposite effects. However, the distribution of activity bouts did not contribute to the changes. These results suggest that the modulation of locomotor behavior by dopamine is predominantly controlled by changing the duration of rest bouts, rather than the duration of activity bouts
Turning Males On: Activation of Male Courtship Behavior in Drosophila melanogaster
The innate sexual behaviors of Drosophila melanogaster males are an attractive system for elucidating how complex behavior patterns are generated. The potential for male sexual behavior in D. melanogaster is specified by the fruitless (fru) and doublesex (dsx) sex regulatory genes. We used the temperature-sensitive activator dTRPA1 to probe the roles of fruM- and dsx-expressing neurons in male courtship behaviors. Almost all steps of courtship, from courtship song to ejaculation, can be induced at very high levels through activation of either all fruM or all dsx neurons in solitary males. Detailed characterizations reveal different roles for fruM and dsx in male courtship. Surprisingly, the system for mate discrimination still works well when all dsx neurons are activated, but is impaired when all fruM neurons are activated. Most strikingly, we provide evidence for a fruM-independent courtship pathway that is primarily vision dependent
Peripheral, Central and Behavioral Responses to the Cuticular Pheromone Bouquet in Drosophila melanogaster Males
Pheromonal communication is crucial with regard to mate choice in many animals including insects. Drosophila melanogaster flies produce a pheromonal bouquet with many cuticular hydrocarbons some of which diverge between the sexes and differently affect male courtship behavior. Cuticular pheromones have a relatively high weight and are thought to be — mostly but not only — detected by gustatory contact. However, the response of the peripheral and central gustatory systems to these substances remains poorly explored. We measured the effect induced by pheromonal cuticular mixtures on (i) the electrophysiological response of peripheral gustatory receptor neurons, (ii) the calcium variation in brain centers receiving these gustatory inputs and (iii) the behavioral reaction induced in control males and in mutant desat1 males, which show abnormal pheromone production and perception. While male and female pheromones induced inhibitory-like effects on taste receptor neurons, the contact of male pheromones on male fore-tarsi elicits a long-lasting response of higher intensity in the dedicated gustatory brain center. We found that the behavior of control males was more strongly inhibited by male pheromones than by female pheromones, but this difference disappeared in anosmic males. Mutant desat1 males showed an increased sensitivity of their peripheral gustatory neurons to contact pheromones and a behavioral incapacity to discriminate sex pheromones. Together our data indicate that cuticular hydrocarbons induce long-lasting inhibitory effects on the relevant taste pathway which may interact with the olfactory pathway to modulate pheromonal perception
- …