3,162 research outputs found

    Spatial theory and method for the study of religion

    Get PDF
    From an examination of recent social and cultural theory and selected work on place and space by scholars of religion I draw together resources for the development of a spatial methodology for the study of religion. In order to identify the key elements of this methodology, I discuss relations between the body and space, the dimensions, properties and aspects of space, and its dynamics, including the mutual imbrication of space, the “sacred” and sacralization. Consideration is given briefly to the application of a spatial approach, its strengths and weaknesses

    Ethanol Tolerance in the Rat Neurohypophysis: a Dissertation

    Get PDF
    One of the main components underlying drug addiction is the emergence of tolerance. Although its development is a complex issue, and is believed to have both psychological and physiological connotations, it is clear that some physiological change must occur that would enable an organism to withstand drug concentrations lethal to a naïve system. The purpose of this thesis was to identify and study a physiological mechanism, whose characteristics were altered due to chronic exposure to ethanol. Vasopressin (AVP), whose primary function is to control water balance, release from the neurohypophysis is suppressed by an acute ethanol challenge. Therefore, I hypothesized; 1) that chronic ethanol exposure would reduce the normal suppression of AVP release during an acute ethanol challenge and 2) that the ion channels that are acutely sensitive to ethanol, involved in the control of AVP release, would exhibit a change in their ethanol sensitivity and characteristics. To study the hypothesis, I utilized the neurohypophysis from rats chronically exposed to ethanol and yoked controls to determine whether chronic exposure would modify the acute ethanol sensitivity of the neurohypophysial vasopressin release mechanism. I examined whether the long-term ethanol exposure affected the suppression of vasopressin release from either or both the intact neurohypophysis and the isolated neurohypophysial terminals. In addition, I investigated how chronic exposure affected two types of potassium channels, the ethanol sensitive large conductance Ca+2-activated (BK) channel and the fast inactivating (IA) channel known to be insensitive to physiologically relevant concentrations of ethanol. I was able to establish that chronic ethanol exposure reduced the suppression of vasopressin release by an acute ethanol challenge from both the intact neurohypophysis and the isolated neurohypophysial terminals. In addition, I discovered that oxytocin release was affected similarly. I concluded from this data that chronic exposure to ethanol affected a general mechanism, which controlled hormone release from the neurohypophysis, and that this mechanism could be isolated to the neurohypophysial terminals. I also used electrophysiological techniques to study ion channel characteristics of both the BK and IA potassium channels. I found that in naïve rats, BK channels were potentiated and IA channels insensitive to physiological relevant concentrations of ethanol. But in chronic ethanol-exposed rats the BK channels exhibited a reduced sensitivity to ethanol while IA channels were inhibited. In addition, the current density of the BK channel was significantly reduced. These results show that at least one characteristic of each potassium channel has been modified. This suggests that chronic exposure can not only modify the ethanol sensitivity of ion channels known to be ethanol-sensitive, but also those believed to be relatively insensitive. Therefore, since modifications in these channels have previously been shown to alter the duration and frequency of action potentials, I conclude that these ethanol-induced modifications play a role in the modified hormone release patterns observed in the chronically exposed rats

    Contaminant Exposure And Associated Biological Responses In Southern Beaufort Sea Polar Bears

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2011Concentrations of mercury (Hg) and polychlorinated biphenyls (PCBs) were examined in polar bear (Ursus marititnus) to assess variations among sex and age cohorts, and evaluate possible adverse impacts of combined toxicant exposures. Biomarkers of selenium (Se) status (whole blood and serum Se concentrations, glutathione peroxidase activity), and thyroid status (total and free concentrations of thyroxine and tri-iodothyronine) were examined in Southern Beaufort Sea (SBS) polar bears. Both Hg and PCBs tended to be greater in female than in male polar bears and likely related to the type and proportion of marine-based prey in their overall diet. Significant positive relationships between circulating concentrations of PCBs, specific blood lipids (e.g., triglycerides and free fatty acids) and reduced body condition scores suggest combined contaminant-environmental stressors for SBS polar bears. Polar bear milk contained detectable concentrations of both Hg and PCBs. Estimated tolerable daily intake levels for PCBs through milk consumption by cubs of the year (< 6 months of age) exceeded available toxicity thresholds and could indicate possible adverse consequences of contaminant exposure during critical stages of neonatal development. Significantly positive and negative associations between contaminants and biomarkers indicated a possible oxidative stress response and thyroid disruption in SBS polar bears. Definitive relationships between contaminants and these physiologically-based biomarkers, however, could not exclude natural variations and equally possible impacts of nutritional stress and changes in physiological status. Female and young polar bears are the cohorts of concern for chronic low-level exposure to chemical mixtures. These data provide a better understanding of the physiological interactions underlying toxicity, and the multiple environment-toxicant stressors projected for arctic species with changes in climate

    VCE early acoustic test results of General Electric's high-radius ratio coannular plug nozzle

    Get PDF
    Results of variable cycle engine (VCE) early acoustic engine and model scale tests are presented. A summary of an extensive series of far field acoustic, advanced acoustic, and exhaust plume velocity measurements with a laser velocimeter of inverted velocity and temperature profile, high radius ratio coannular plug nozzles on a YJ101 VCE static engine test vehicle are reviewed. Select model scale simulated flight acoustic measurements for an unsuppressed and a mechanical suppressed coannular plug nozzle are also discussed. The engine acoustic nozzle tests verify previous model scale noise reduction measurements. The engine measurements show 4 to 6 PNdB aft quadrant jet noise reduction and up to 7 PNdB forward quadrant shock noise reduction relative to a fully mixed conical nozzle at the same specific thrust and mixed pressure ratio. The influences of outer nozzle radius ratio, inner stream velocity ratio, and area ratio are discussed. Also, laser velocimeter measurements of mean velocity and turbulent velocity of the YJ101 engine are illustrated. Select model scale static and simulated flight acoustic measurements are shown which corroborate that coannular suppression is maintained in forward speed

    Free-jet acoustic investigation of high-radius-ratio coannular plug nozzles

    Get PDF
    The experimental and analytical results of a scale model simulated flight acoustic exploratory investigation of high radius ratio coannular plug nozzles with inverted velocity and temperature profiles are summarized. Six coannular plug nozzle configurations and a baseline convergent conical nozzle were tested for simulated flight acoustic evaluation. The nozzles were tested over a range of test conditions that are typical of a Variable Cycle Engine for application to advanced high speed aircraft. It was found that in simulate flight, the high radius ratio coannular plug nozzles maintain their jet noise and shock noise reduction features previously observed in static testing. The presence of nozzle bypass struts will not significantly affect the acousticn noise reduction features of a General Electric type nozzle design. A unique coannular plug nozzle flight acoustic spectral prediction method was identified and found to predict the measured results quite well. Special laser velocimeter and acoustic measurements were performed which have given new insights into the jet and shock noise reduction mechanisms of coannular plug nozzles with regard to identifying further benificial research efforts

    Free-jet investigation of mechanically suppressed, high radius ratio coannular plug model nozzles

    Get PDF
    The experimental and analytical acoustic results of a scale-model investigation or unsuppressed and mechanically suppressed high-radius ratio coannular plug nozzles with inverted velocity and temperature profiles are summarized. Nine coannular nozzle configurations along with a reference conical nozzle were evaluated in the Anechoic Free-Jet Facility for a total of 212 acoustic test points. Most of the tests were conducted at variable cycle engine conditions applicable to advanced high speed aircraft. The tested nozzles included coannular plug nozzles with both convergent and convergent-divergent (C-D) terminations in order to evaluate C-D effectiveness in the reduction of shock-cell noise and 20 and 40 shallow-chute mechanical suppressors in the outer stream in order to evaluate their effectiveness in the reduction of jet noise. In addition to the acoustic tests, mean and turbulent velocity measurements were made on selected plumes of the 20 shallow-chute configuration using a laser velocimeter. At a mixed jet velocity of 700 m/sec, the 20 shallow-chute suppressor configuration yielded peak aft quadrant suppression of 11.5 and 9 PNdB and forward quadrant suppression of 7 and 6 PNdB relative to a baseline conical nozzles during static and simulated flight, respectively. The C-D terminations were observed to reduce shock-cell noise. An engineering spectral prediction method was formulated for mechanically suppressed coannular plug nozzles

    Experimental Investigation of Shock-Cell Noise Reduction for Single Stream Nozzles in Simulated Flight

    Get PDF
    Seven single stream model nozzles were tested in the Anechoic Free-Jet Acoustic Test Facility to evaluate the effectiveness of convergent divergent (C-D) flowpaths in the reduction of shock-cell noise under both static and mulated flight conditions. The test nozzles included a baseline convergent circular nozzle, a C-D circular nozzle, a convergent annular plug nozzle, a C-D annular plug nozzle, a convergent multi-element suppressor plug nozzle, and a C-D multi-element suppressor plug nozzle. Diagnostic flow visualization with a shadowgraph and aerodynamic plume measurements with a laser velocimeter were performed with the test nozzles. A theory of shock-cell noise for annular plug nozzles with shock-cells in the vicinity of the plug was developed. The benefit of these C-D nozzles was observed over a broad range of pressure ratiosin the vicinity of their design conditions. At the C-D design condition, the C-D annual nozzle was found to be free of shock-cells on the plug

    The Roots, Practices and Consequences of Terrorism: A Literature Review of Research in the Arts & Humanities

    Get PDF
    This report contains a literature review of Arts and Humanities research on the roots, practices and consequences of terrorism with an annotated bibliography. The literature review was carried out for the Home Office by a team at the University of Leeds between March and October 2006

    Free jet feasibility study of a thermal acoustic shield concept for AST/VCE application: Single stream nozzles

    Get PDF
    A technology base for the thermal acoustic shield concept as a noise suppression device for single stream exhaust nozzles was developed. Acoustic data for 314 test points for 9 scale model nozzle configurations were obtained. Five of these configurations employed an unsuppressed annular plug core jet and the remaining four nozzles employed a 32 chute suppressor core nozzle. Influence of simulated flight and selected geometric and aerodynamic flow variables on the acoustic behavior of the thermal acoustic shield was determined. Laser velocimeter and aerodynamic measurements were employed to yield valuable diagnostic information regarding the flow field characteristics of these nozzles. An existing theoretical aeroacoustic prediction method was modified to predict the acoustic characteristics of partial thermal acoustic shields
    corecore