981 research outputs found

    Size-independence of statistics for boundary collisions of random walks and its implications for spin-polarized gases

    Full text link
    A bounded random walk exhibits strong correlations between collisions with a boundary. For an one-dimensional walk, we obtain the full statistical distribution of the number of such collisions in a time t. In the large t limit, the fluctuations in the number of collisions are found to be size-independent (independent of the distance between boundaries). This occurs for any inter-boundary distance, including less and greater than the mean-free-path, and means that this boundary effect does not decay with increasing system-size. As an application, we consider spin-polarized gases, such as 3-Helium, in the three-dimensional diffusive regime. The above results mean that the depolarizing effect of rare magnetic-impurities in the container walls is orders of magnitude larger than a Smoluchowski assumption (to neglect correlations) would imply. This could explain why depolarization is so sensitive to the container's treatment with magnetic fields prior to its use.Comment: 5 page manuscript with extra details in appendices (additional 3 pages

    Extremely short-length surface plasmon resonance sensors

    Get PDF
    The impact of the system design on the control of coupling between planar waveguide modes and surface plasmon polaritons (SPP) is analyzed. We examine how the efficiency of the coupling can be enhanced by an appropriate dimensioning of a multi-layer device structure without using additional gratings. We demonstrate that by proper design the length of the device can be dramatically reduced through fabrication a surface plasmon resonance sensor based on the SPP-photon transformation rather then on SPP dissipation

    A time lens for high resolution neutron time of flight spectrometers

    Full text link
    We examine in analytic and numeric ways the imaging effects of temporal neutron lenses created by traveling magnetic fields. For fields of parabolic shape we derive the imaging equations, investigate the time-magnification, the evolution of the phase space element, the gain factor and the effect of finite beam size. The main aberration effects are calculated numerically. The system is technologically feasible and should convert neutron time of flight instruments from pinhole- to imaging configuration in time, thus enhancing intensity and/or time resolution. New fields of application for high resolution spectrometry may be opened.Comment: 8 pages, 11 figure

    Dynamic Fluctuation Phenomena in Double Membrane Films

    Full text link
    Dynamics of double membrane films is investigated in the long-wavelength limit including the overdamped squeezing mode. We demonstrate that thermal fluctuations essentially modify the character of the mode due to its nonlinear coupling to the transversal shear hydrodynamic mode. The corresponding Green function acquires as a function of the frequency a cut along the imaginary semi-axis. Fluctuations lead to increasing the attenuation of the squeezing mode it becomes larger than the `bare' value.Comment: 7 pages, Revte

    Dynamics of nearly spherical vesicles in an external flow

    Full text link
    We analytically derive an equation describing vesicle evolution in a fluid where some stationary flow is excited regarding that the vesicle shape is close to a sphere. A character of the evolution is governed by two dimensionless parameters, SS and Λ\Lambda, depending on the vesicle excess area, viscosity contrast, membrane viscosity, strength of the flow, bending module, and ratio of the elongation and rotation components of the flow. We establish the ``phase diagram'' of the system on the SΛS-\Lambda plane: we find curves corresponding to the tank-treading to tumbling transition (described by the saddle-node bifurcation) and to the tank-treading to trembling transition (described by the Hopf bifurcation).Comment: 4 pages, 1 figur

    Sound modes broadening for Fibonacci one dimensional quasicrystals

    Full text link
    We investigate vibrational excitation broadening in one dimensional Fibonacci model of quasicrystals (QCs). The chain is constructed from particles with two masses following the Fibonacci inflation rule. The eigenmode spectrum depends crucially on the mass ratio. We calculate the eigenstates and eigenfunctions. All calculations performed self-consistently within the regular expansion over the three wave coupling constant. The approach can be extended to three dimensional systems. We find that in the intermediate range of mode coupling constants, three-wave broadening for the both types of systems (1D Fibonacci and 3D QCs) depends universally on frequency. Our general qualitative conclusion is that for a system with a non-simple elementary cell phonon spectrum broadening is always larger than for a system with a primitive cell (provided all other characteristics are the same).Comment: 2o pages, 15 figure
    corecore