18 research outputs found

    Towards an optimal design of target for tsetse control: comparisons of novel targets for the control of palpalis group tsetse in West Africa

    Get PDF
    Background: Tsetse flies of the Palpalis group are the main vectors of sleeping sickness in Africa. Insecticide impregnated targets are one of the most effective tools for control. However, the cost of these devices still represents a constraint to their wider use. The objective was therefore to improve the cost effectiveness of currently used devices. Methodology/Principal Findings: Experiments were performed on three tsetse species, namely Glossina palpalis gambiensis and G. tachinoides in Burkina Faso and G. p. palpalis in Côte d'Ivoire. The 1×1 m2 black blue black target commonly used in W. Africa was used as the standard, and effects of changes in target size, shape, and the use of netting instead of black cloth were measured. Regarding overall target shape, we observed that horizontal targets (i.e. wider than they were high) killed 1.6-5x more G. p. gambiensis and G. tachinoides than vertical ones (i.e. higher than they were wide) (P<0.001). For the three tsetse species including G. p. palpalis, catches were highly correlated with the size of the target. However, beyond the size of 0.75 m, there was no increase in catches. Replacing the black cloth of the target by netting was the most cost efficient for all three species. Conclusion/Significance: Reducing the size of the current 1*1 m black-blue-black target to horizontal designs of around 50 cm and replacing black cloth by netting will improve cost effectiveness six-fold for both G. p. gambiensis and G. tachinoides. Studying the visual responses of tsetse to different designs of target has allowed us to design more cost-effective devices for the effective control of sleeping sickness and animal trypanosomiasis in Africa

    Multiple Trypanosoma infections are common amongst Glossina species in the new farming areas of Rufiji district, Tanzania

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tsetse flies and trypanosomiasis are among several factors that constrain livestock development in Tanzania. Over the years Rufiji District was excluded from livestock production owing to tsetse fly infestation, however, a few years ago there was an influx of livestock following evictions aimed at conserving the Usangu wetlands.</p> <p>Methods</p> <p>A study was conducted to determine the efficiency of available traps for catching tsetse flies, <it>Glossina </it>species infesting the area, their infection rates and <it>Trypanosoma </it>species circulating in the area. Trapping was conducted during the semi dry season for a total of 30 days (ten days each month) during the onset of the dry season of May - July 2009. Harvested flies after every 24 hours were dissected and examined under a light microscope for trypanosome infections and whole fly DNA was extracted from 82 flies and analyzed for trypanosomes by polymerase chain reaction (PCR) using different sets of primers.</p> <p>Results</p> <p>The proportions of total tsetse catches per trap were in the following decreasing order S3 (33%), H-Trap (27%), Pyramidal (19%), sticky panel (11%) and biconical trap (10%). Of the 1200 trapped flies, 75.6% were identified as <it>Glossina pallidipes</it>, 11.7% <it>as G. brevipalpis</it>, 9.6% as <it>G. austeni </it>and 3.0% <it>G. morsitans morsitans</it>. Dissections revealed the overall infection rate of 6.6% (13/197). Whole DNA was extracted from 82 tsetse flies and the prevalence of trypanosomes circulating in the area in descending order was 92.7% (76/82) for <it>T. simiae</it>; 70.7% (58/82) for <it>T. brucei </it>types; 48.8% (40/82) for the <it>T. vivax </it>types and 32.9% (27/82) for the <it>T. congolense </it>types as determined by PCR. All trypanosome types were found in all tsetse species analysed except for the <it>T. congolense </it>types, which were absent in <it>G. m. morsitans</it>. None of the <it>T. brucei </it>positive samples contained human infective trypanosomes by SRA - PCR test</p> <p>Conclusion</p> <p>All tsetse species found in Rufiji are biologically important in the transmission of animal trypanosomiasis and the absence of <it>T. congolense </it>in <it>G. m. morsitans </it>could be a matter of chance only. Therefore, plans for control should consider all tsetse species.</p

    Complete In Vitro Life Cycle of Trypanosoma congolense: Development of Genetic Tools

    Get PDF
    Trypanosoma congolense is a parasite responsible for severe disease of African livestock. Its life cycle is complex and divided into two phases, one in the tsetse fly vector and one in the bloodstream of the mammalian host. Molecular tools for gene function analyses in parasitic organisms are essential. Previous studies described the possibility of completing the entire T. congolense life cycle in vitro. However, the model showed major flaws including the absence of stable long-term culture of the infectious bloodstream forms, a laborious time-consuming period to perform the cycle and a lack of genetic tools. We therefore aimed to develop a standardized model convenient for genetic engineering. We succeeded in producing long-term cultures of all the developmental stages on long-term, to define all the differentiation steps and to finally complete the whole cycle in vitro. This improved model offers the opportunity to conduct phenotype analyses of genetically modified strains throughout the in vitro cycle and also during experimental infections

    Creative destruction in science

    Get PDF
    Drawing on the concept of a gale of creative destruction in a capitalistic economy, we argue that initiatives to assess the robustness of findings in the organizational literature should aim to simultaneously test competing ideas operating in the same theoretical space. In other words, replication efforts should seek not just to support or question the original findings, but also to replace them with revised, stronger theories with greater explanatory power. Achieving this will typically require adding new measures, conditions, and subject populations to research designs, in order to carry out conceptual tests of multiple theories in addition to directly replicating the original findings. To illustrate the value of the creative destruction approach for theory pruning in organizational scholarship, we describe recent replication initiatives re-examining culture and work morality, working parents\u2019 reasoning about day care options, and gender discrimination in hiring decisions. Significance statement It is becoming increasingly clear that many, if not most, published research findings across scientific fields are not readily replicable when the same method is repeated. Although extremely valuable, failed replications risk leaving a theoretical void\u2014 reducing confidence the original theoretical prediction is true, but not replacing it with positive evidence in favor of an alternative theory. We introduce the creative destruction approach to replication, which combines theory pruning methods from the field of management with emerging best practices from the open science movement, with the aim of making replications as generative as possible. In effect, we advocate for a Replication 2.0 movement in which the goal shifts from checking on the reliability of past findings to actively engaging in competitive theory testing and theory building. Scientific transparency statement The materials, code, and data for this article are posted publicly on the Open Science Framework, with links provided in the article

    Explaining the host-finding behavior of blood-sucking insects: computerized simulation of the effects of habitat geometry on tsetse fly movement

    Get PDF
    BACKGROUND: Male and female tsetse flies feed exclusively on vertebrate blood. While doing so they can transmit the diseases of sleeping sickness in humans and nagana in domestic stock. Knowledge of the host-orientated behavior of tsetse is important in designing bait methods of sampling and controlling the flies, and in understanding the epidemiology of the diseases. For this we must explain several puzzling distinctions in the behavior of the different sexes and species of tsetse. For example, why is it that the species occupying savannahs, unlike those of riverine habitats, appear strongly responsive to odor, rely mainly on large hosts, are repelled by humans, and are often shy of alighting on baits? METHODOLOGY/PRINCIPLE FINDINGS: A deterministic model that simulated fly mobility and host-finding success suggested that the behavioral distinctions between riverine, savannah and forest tsetse are due largely to habitat size and shape, and the extent to which dense bushes limit occupiable space within the habitats. These factors seemed effective primarily because they affect the daily displacement of tsetse, reducing it by up to ,70%. Sex differences in behavior are explicable by females being larger and more mobile than males. CONCLUSION/SIGNIFICANCE: Habitat geometry and fly size provide a framework that can unify much of the behavior of all sexes and species of tsetse everywhere. The general expectation is that relatively immobile insects in restricted habitats tend to be less responsive to host odors and more catholic in their diet. This has profound implications for the optimization of bait technology for tsetse, mosquitoes, black flies and tabanids, and for the epidemiology of the diseases they transmit

    Selective use of odour-baited, insecticide-treated targets to control tsetse flies Glossina austeni and G. brevipalpis in South Africa

    No full text
    The effectiveness of odour-baited targets treated with 0.8% deltamethrin in controlling Glossina austeni Newstead and G. brevipalpis Newstead (Diptera: Glossinidae) was evaluated in Zululand, South Africa. Targets were initially deployed in the three habitat types (grassland, woodland and forest) of two adjacent areas at a density of four targets per km(2). One area functioned as the treatment block (c. 35 km(2)) and included the focus of the target deployment, and the second area functioned as a barrier block (c. 40 km(2)) against tsetse fly re-invasion from the untreated area to the south. After 8 months, targets were removed from open grassland in both areas and target density in wooded habitats and sand forest was increased to eight per km(2). Twelve months later, all targets were removed from the barrier block and used to increase target density in the wooded and sand forest habitats of the treatment block to 12 per km(2). This target density was maintained for 14 months. In the treatment area, a 99% reduction in G. austeni females occurred after 13 months at a target density of eight per km(2) in wooded habitat; this was maintained for 22 months. Reduction in G. brevipalpis was less marked. The relatively poor reduction in G. brevipalpis is attributed to the high mobility of this species and its distribution throughout less wooded and more open habitats

    Abundance and distribution of the tsetse flies, Glossina austeni and G. brevipalpis, in different habitats in South Africa

    No full text
    The distribution and abundance of Glossina austeni Newstead and Glossina brevipalpis Newstead (Diptera: Glossinidae) were studied in the three main vegetation types in Zululand, KwaZulu-Natal, South Africa. During a period of 12 months, a trap transect consisting of 38 H-traps traversing the three vegetation types was monitored. The Index of Apparent Abundance (IAA) for G. brevipalpis was high in indigenous forest and open grassland but lower in exotic plantations. Glossina austeni, on the other hand, was captured mainly in or adjacent to indigenous forest. The seasonal trend in the IAA did not differ between vegetation types. The findings on the distribution of G. brevipalpis are in contrast with the historic records. Historically, this species was considered to be restricted to areas with a dense overhead canopy and high relative humidity. The repercussions of these findings for the epidemiology of livestock trypanosomiasis and the control of tsetse in Zululand are discussed
    corecore