122 research outputs found
Water Adsorption on AnO2 {111}, {110} and {100} Surfaces (An = U, Pu); A DFT+U Study
The interactions between water and the actinide oxides UO2 and PuO2 are important both fundamentally and when considering the long-term storage of spent nuclear fuel. However, experimental studies in this area are severely limited by the intense radioactivity of plutonium, and hence, we have recently begun to investigate these interactions computationally. In this paper, we report the results of plane-wave density functional theory calculations of the interaction of water with the {111}, {110}, and {100} surfaces of UO2 and PuO2, using a Hubbard-corrected potential (PBE + U) approach to account for the strongly correlated 5f electrons. We find a mix of molecular and dissociative water adsorption to be most stable on the {111} surface, whereas the fully dissociative water adsorption is most stable on the {110} and {100} surfaces, leading to a fully hydroxylated monolayer. From these results, we derive water desorption temperatures at various pressures for the different surfaces. These increase in the order {111} < {110} < {100}, and these data are used to propose an alternative interpretation for the two experimentally determined temperature ranges for water desorption from PuO2
Organometallic neptunium(III) complexes
Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal–ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements
Recommended from our members
Energy-Degeneracy-Driven Covalency in Actinide Bonding
Evaluating the nature of chemical bonding for actinide elements represents one of the most important and long-standing problems in actinide science. We directly address this challenge and contribute a Cl K-edge X-ray absorption spectroscopy and relativistic density functional theory study that quantitatively evaluates An–Cl covalency in AnCl62– (AnIV = Th, U, Np, Pu). The results showed significant mixing between Cl 3p- and AnIV 5f- and 6d-orbitals (t1u*/t2u* and t2g*/eg*), with the 6d-orbitals showing more pronounced covalent bonding than the 5f-orbitals. Moving from Th to U, Np, and Pu markedly changed the amount of M–Cl orbital mixing, such that AnIV 6d- and Cl 3p-mixing decreased and metal 5f- and Cl 3p-orbital mixing increased across this series
Short-Lived Trace Gases in the Surface Ocean and the Atmosphere
The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science
Small Molecule Activation by Uranium Tris(aryloxides): Experimental and Computational Studies of Binding of N-2, Coupling of CO, and Deoxygenation Insertion of CO2 under Ambient Conditions
Previously unanticipated dinitrogen activation is exhibited by the well-known uranium tris(aryloxide) U(ODtbp)(3), U(OC6H3-Bu-2(t)-2,6)(3), and the tri-tert-butyl analogue U(OTtbp)(3), U(OC6H2-Bu-3(t)-2,4,6)(3), in the form of bridging, side-on dinitrogen complexes [U(OAr)(3)](2)(mu-eta(2):eta(2)-N-2), for which the tri-tert-butyl N-2 complex is the most robust U-2(N-2) complex isolated to date. Attempted reduction of the tris(aryloxide) complex under N-2 gave only the potassium salt of the uranium(III) tetra(aryloxide) anion, K[U(OAr)(4)], as a result of ligand redistribution. The solid-state structure is a polymeric chain formed by each potassium cation bridging two arenes of adjacent anions in an eta(6) fashion. The same uranium tris(aryloxides) were also found to couple carbon monoxide under ambient conditions to give exclusively the ynediolate [OCCO](2-) dianion in [U(OAr)(3)](2)(mu-eta(1):eta(1)-C2O2), in direct analogy with the reductive coupling recently shown to afford [U{N(SiMe3)(2)}(3)](2)(mu-eta(1):eta(1)-C2O2). The related U-III complexes U{N(SiPhMe2)(2)}(3) and U{CH(SiMe3)(2)}(3) however do not show CO coupling chemistry in our hands. Of the aryloxide complexes, only the U(OC6H2-Bu-3(t)-2,4,6)(3) reacts with CO2 to give an insertion product containing bridging oxo and aryl carbonate moieties, U-2(OTtbp)(4)(mu-O)(mu-eta(1):eta(1)-O2COC6H2-Bu-3(t)-2,4,6)(2), which has been structurally characterized. The presence of coordinated N-2 in [U(OTtbp)(3)](2)(N-2) prevents the occurrence of any reaction with CO2, underscoring the remarkable stability of the N-2 complex. The di-tert-butyl aryloxide does not insert CO2, and only U(ODtbp)(4) was isolated. The silylamide also reacts with carbon dioxide to afford U(OSiMe3)(4) as the only uranium-containing material. GGA and hybrid DFT calculations, in conjunction with topological analysis of the electron density, suggest that the U-N-2 bond is strongly polar, and that the only covalent U -> N-2 interaction is pi backbonding, leading to a formal (U-IV)(2)(N-2)(2-) description of the electronic structure. The N-N stretching wavenumber is preferred as a metric of N-2 reduction to the N-N bond length, as there is excellent agreement between theory and experiment for the former but poorer agreement for the latter due to X-ray crystallographic underestimation of r(N-N). Possible intermediates on the CO coupling pathway to [U(OAr)(3)](2)(mu-C2O2) are identified, and potential energy surface scans indicate that the ynediolate fragment is more weakly bound than the ancillary ligands, which may have implications in the development of low-temperature and pressure catalytic CO chemistry
- …