234 research outputs found
An architecture for the design of context-aware conversational agents
Proceedings of: 8th International Conference on Practical Applications of Agents and Multiagent Systems, Salamanca, Spain, April 26-28, 2010.In this paper, we present a architecture for the development of conversational agents that provide a personalized service to the user. The different agents included in our architecture facilitate an adapted service by taking into account context information and users specific requirements and preferences. This functionality is achieved by means of the introduction of a context manager and the definition of user profiles. We describe the main characteristics of our architecture and its application to develop and evaluate an information system for an academic domain.CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02- 02/TEC,
SINPROB, CAM MADRINET S-0505/TIC/0255 and DPS2008-07029-C02-02.Publicad
Towards Activity Context using Software Sensors
Service-Oriented Computing delivers the promise of configuring and
reconfiguring software systems to address user's needs in a dynamic way.
Context-aware computing promises to capture the user's needs and hence the
requirements they have on systems. The marriage of both can deliver ad-hoc
software solutions relevant to the user in the most current fashion. However,
here it is a key to gather information on the users' activity (that is what
they are doing). Traditionally any context sensing was conducted with hardware
sensors. However, software can also play the same role and in some situations
will be more useful to sense the activity of the user. Furthermore they can
make use of the fact that Service-oriented systems exchange information through
standard protocols. In this paper we discuss our proposed approach to sense the
activity of the user making use of software
Multi-Agent System (MAS) Applications in Ambient Intelligence (AmI) Environments
Proceedings of: 8th Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS`10). Salamanca (Spain), 28-30 April 2010Research in context-aware systems has been moving towards reusable and adaptable architectures for managing more advanced human-computer interfaces. Ambient. Intelligence (AmI) investigates computer-based services, which are ubiquitous and based on a variety of objects and devices. Their intelligent and intuitive interfaces act as mediators through which people can interact with the ambient environment. In this paper we present an agent-based architecture which supports the execution of agents in AmI environments. Two case studies are also presented, an airport information system and a railway information system, which uses spoken conversational agents to respond to the user's requests using the contextual information that includes the location information of the user.This work has been partially supported by CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB, CAM MADRINET S-0505/TIC/0255 and DPS2008-07029-C02-02Publicad
A novel context ontology to facilitate interoperation of semantic services in environments with wearable devices
The LifeWear-Mobilized Lifestyle with Wearables (Lifewear) project attempts to create Ambient Intelligence (AmI) ecosystems by composing personalized services based on the user information, environmental conditions and reasoning outputs. Two of the most important benefits over traditional environments are 1) take advantage of wearable devices to get user information in a nonintrusive way and 2) integrate this information with other intelligent services and environmental sensors. This paper proposes a new ontology composed by the integration of users and services information, for semantically representing this information. Using an Enterprise Service Bus, this ontology is integrated in a semantic middleware to provide context-aware personalized and semantically annotated services, with discovery, composition and orchestration tasks. We show how these services support a real scenario proposed in the Lifewear project
Single-stranded DNA catenation mediated by human EVL and a type I topoisomerase
The human Ena/Vasp-like (EVL) protein is considered to be a bifunctional protein, involved in both actin remodeling and homologous recombination. In the present study, we found that human EVL forms heat-stable multimers of circular single-stranded DNA (ssDNA) molecules in the presence of a type I topoisomerase in vitro. An electron microscopic analysis revealed that the heat-stable ssDNA multimers formed by EVL and topoisomerase were ssDNA catemers. The ssDNA catenation did not occur when either EVL or topoisomerase was omitted from the reaction mixture. A deletion analysis revealed that the ssDNA catenation completely depended on the annealing activity of EVL. Human EVL was captured from a human cell extract by TOPO IIIα-conjugated beads, and the interaction between EVL and TOPO IIIα was confirmed by a surface plasmon resonance analysis. Purified TOPO IIIα catalyzed the ssDNA catenation with EVL as efficiently as the Escherichia coli topoisomerase I. Since the ssDNA cutting and rejoining reactions, which are the sub-steps of ssDNA catenation, may be an essential process in homologous recombination, EVL and TOPO IIIα may function in the processing of DNA intermediates formed during homologous recombination
Addressing the evolution of automated user behaviour patterns by runtime model interpretation
The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-013-0371-3The use of high-level abstraction models can facilitate and improve not only system development but also runtime system evolution. This is the idea of this work, in which behavioural models created at design time are also used at runtime to evolve system behaviour. These behavioural models describe the routine tasks that users want to be automated by the system. However, users¿ needs may change after system deployment, and the routine tasks automated by the system must evolve to adapt to these changes. To facilitate this evolution, the automation of the specified routine tasks is achieved by directly interpreting the models at runtime. This turns models into the primary means to understand and interact with the system behaviour associated with the routine tasks as well as to execute and modify it. Thus, we provide tools to allow the adaptation of this behaviour by modifying the models at runtime. This means that the system behaviour evolution is performed by using high-level abstractions and avoiding the costs and risks associated with shutting down and restarting the system.This work has been developed with the support of MICINN, under the project EVERYWARE TIN2010-18011, and the support of the Christian Doppler Forschungsgesellschaft and the BMWFJ, Austria.Serral Asensio, E.; Valderas Aranda, PJ.; Pelechano Ferragud, V. (2013). Addressing the evolution of automated user behaviour patterns by runtime model interpretation. Software and Systems Modeling. https://doi.org/10.1007/s10270-013-0371-3SWeiser, M.: The computer of the 21st century. Sci. Am. 265, 66–75 (1991)Serral, E., Valderas, P., Pelechano, V.: Context-adaptive coordination of pervasive services by interpreting models during runtime. Comput. J. 56(1), 87–114 (2013)Ajila, S.A., Alam, S.: Using a formal language constructs for software model evolution. In: Third IEEE International Conference on Semantic Computing (IEEE-ICSC 2009). Berkeley, CA, USA, pp. 390–395 (2009)Bennett, K., Rajlich, V.: Software Maintenance and Evolution: A Roadmap. In: 22nd International Conference on Software Engineering (ICSE 2000). Limerick, Ireland, pp. 75–87 (2000)Mens, T.: The ERCIM working group on software evolution: the past and the future. In: Proceedings of the Joint International and Annual ERCIM Workshops on Principles of Software Evolution (IWPSE) and Software Evolution (Evol) Workshops. ACM (2009)Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R.: Challenges in software evolution. In: Report of the ChaSE 2005 Workshop Organised by the ERCIM Working Group on Software Evolution. IWPSE-05. Lisbon, Portugal, pp. 13–22 (2005)Hirschfeld, R., Kawamura, K., Berndt, H.: Dynamic service adaptation for runtime system extensions. In: Wireless On-Demand Network Systems, pp. 227–240. Springer, Berlin, Heidelberg, Madonna di Campiglio, Italy (2004)Lientz, B.P., Swanson, E.B.: Software maintenance management: a study of the maintenance of computer applications software in 487 data processing organizations. Addison-Wesley, Reading, MA (1980)Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.: Towards a taxonomy of software change. J. Softw. Maint. Evolut. Res. Pract. 17(5), 309–332 (2003)Hardian, B., Indulska, J., Henricksen, K.: Balancing autonomy and user control in context-aware systems—a survey. In: CoMoRea, IEEE PerCom Workshops 2006. (2006)Biegel, G., Cahill, V.: A framework for developing mobile, context-aware applications. In: The 2nd IEEE Conference on Pervasive Computing and Communication (PerCom), pp. 361–365 (2004)Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann, J.: Context-awareness on mobile devices—the hydrogen approach. In: The 36th Annual Hawaii International Conference on System Sciences, pp. 292–302 (2002)Dey, A.K.: Understanding and using context. Pers. Ubiquitous Comput. 5(1), 4–7 (2001)Sheng, Q.Z., Benatallah, B.: ContextUML: a UML-based modelling language for model-driven development of context-aware web services. In: Proceedings of the International Conference on Mobile, Business (ICMB’05). pp. 206–212 (2005)Henricksen, K., Indulska, J.: A software engineering framework for context-aware pervasive computing. In: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PerCom 2004), pp. 77–86. IEEE, Orlando, FL, USA (2004)Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad Hoc Ubiquitous Comput. 2(4), 263–277 (2007)Ye, J., Coyle, L., Dobson, S., Nixon, P.: Ontology-based models in pervasive computing systems. Knowl. Eng. Rev. 22(4), 315–347 (2007)Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing environments. Special Issue on Ontologies for Distributed Systems. Knowl. Eng. Rev. 18(3), 197–207 (2004)Welty, C., McGuinness, D.L.: OWL Web Ontology Language Guide. vol. W3C Recomm. W3C Recommendation 10 Feb 2004 (2004)Shepherd, A.: HTA as a framework for task analysis. Ergonomics 41, 1537–1552 (1998)Serral, E., Valderas, P., Pelechano, V.: Towards the model driven development of context-aware pervasive systems. Special Issue on Context Modelling, Reasoning and Management. PMC 6(2), 254–280 (2010)Serral, E.: Automating Routine Tasks in Smart Environments. A Context-aware Model-driven Approach, Technical University of Valencia (2011)Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model Driven Architecture. Addison-Wesley, Indianapolis (2002)Muñoz, J., Ferragud, D.V.P.: Model Driven Development of Pervasive Systems. Building a Software Factory. Universidad Politécnica de Valencia, Valencia (2008)Juric, M.B., Sarang, P.: Business Process Execution Language for Web Services: BPEL and BPEL4WS (2006)Loke, S.W., Smanchat, S., Ling, S., Indrawan, M.: Formal mirror models: an approach to just-in-time reasoning for device ecologies. Int. J. Smart Home 2(1), 15–32 (2008)Code Generation conference. http://www.codegeneration.net/cg2010/ (2010)Guy, M.: Report 2: API Good Practice Good practice for provision of and consuming APIs. UKOLN (2009)Bloch, J.: How to design a good API and why it matters. pp. 506–507 (2005)Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007)Bernstein, P.: Multiversion concurrency control—theory and algorithms. ACM Trans. Database Syst. 8(4), 465–484 (1983)Cooper, S., Dann, W., Pausch, R.: Alice: a 3-D tool for introductory programming concepts. J. Comput. Sci. Coll. 15, 107–116 (2000)Pérez, F., Valderas, P.: Allowing end-users to actively participate within the elicitation of pervasive system requirements through immediate visualization. In: Fourth International Workshop on Requirements Engineering Visualization (REV), pp. 31–40. IEEE, Atlanta, Georgia, USA (2009)Lieberman, H., Paternó, F., Wulf, V.: End User Development. Springer, Dordrecht (2006)Nielsen, J.: Usability Engineering. Morgan Kaufmann Publishers Inc, San Francisco (1993)Van Welie, M., Trætteberg, H.: Interaction Patterns in User, Interfaces. pp. 13–16 (2000)Galitz, W.O.: The Essential Guide to User Interface Design: An Introduction to GUI Design Principles and Techniques. Wiley, New York (2002)Kitchenham, B., Pickard, L., Pfleeger, S.L.: Case studies for method and tool evaluation. Softw. IEEE 12(4), 52–62 (1995)Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation in Software Engineering. Springer, Berlin (2012)Jones, J.V.: Applied software measurement: assuring productivity & quality (2nd ed’97). McGraw-Hill, New York (1997)Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: First International Workshop on Advanced Context Modelling, Reasoning And Management at UbiComp (2004)Lewis, J.R.: Psychometric Evaluation of an After-Scenario Questionnaire for Computer Usability Studies? The ASQ. SIGCHI Bulletin (1991)Cook, D.J., Youngblood, M., Heierman, I.I.I.E.O., Gopalratnam, K., Rao, S., Litvin, A., Khawaja, F.: MavHome: An Agent-based Smart Home. In: First IEEE International Conference on Pervasive Computing and, Communications (PerCom’03), pp. 521–524 (2003)Hagras, H., Callaghan, V., Colley, M., Clarke, G., Pounds-Cornish, A., Duman, H.: Creating an ambient-intelligence environment using embedded agents. IEEE Intell. Syst. 19(6), 12–20 (2004)Rashidi, P., Cook, D.J.: Keeping the resident in the loop: adapting the smart home to the user. IEEE Trans. Syst. Man Cybern. 39(5), 949–959 (2009)Webb, G.I., Pazzani, M.J., Billsus, D.: Machine learning for user modeling. User model. User-Adapt Interact. 11(1–2), 19–29 (2001)Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)Serral, E., Valderas, P., Pelechano, V.: (2011) Improving the cold-start problem in user task automation by using models at runtime. In: Information Systems Development, pp. 671–683. (2011)GarcÃa-Herranz, M., Haya, P.A., Esquivel, A., Montoro, G., Alamán, X.: Easing the smart home: semi-automatic adaptation in perceptive environments. J. Univers. Comput. Sci. 14(9), 1529–1544 (2008)Henricksen, K., Indulska, J., Rakotonirainy, A.: Using context and preferences to implement self-adapting pervasive computing applications. Sofw. Pract. Exp. 36(11–12), 1307–1330 (2006)Johnson, P.: Tasks and situations: considerations for models and design principles in human computer interaction, pp. 1199–1204. HCI International. Munich, Germany (1999)Cook, D.J., Das, S.K.: Smart environments: technologies, protocols, and applications, vol. 43. Wiley-Interscience, New York (2005)Paternò, F.: ConcurTaskTrees: an Engineered approach to model-based design of interactive systems. In: The Handbook of Analysis for Human-Computer Interaction, pp. 483–500 (2002)Pribeanu, C., Limbourg, Q., Vanderdonckt1, J.: Task modelling for context-sensitive user interfaces. In: Interactive Systems: Design, Specification, and Verification (DSV-IS), pp. 49–68. Springer, Berlin, Heidelberg 2001, Glasgow, Scotland, UK (2001)Souchon, N., Limbourg, Q., Vanderdonckt., J.: Task modelling in multiple contexts of use. In: Interactive Systems: Design, Specification, and Verification (DSV-IS), pp. 59–73 (2002)Huang, R., Cao, Q., Zhou, J., Sun, D., Su, Q.: Context-aware active task discovery for pervasive computing. In: International Conference on Computer Science and Software Engineering, pp. 463–466. IEEE, Wuhan, China (2008)Sousa, J.P., Poladian, V., Garlan, D., Schmerl, B.: Task-based adaptation for ubiquitous computing. IEEE Trans. Syst. Man Cybern. 36(3), 328–340 (2006)Masuoka, R., Parsia, B., Labrou, Y.: Task Computing—The Semantic Web Meets Pervasive Computing. In: 2nd International Semantic Web Conference on the Semantic Web (ISWC 2003), pp. 866–881. vol. LNCS 2870. Sanibel Island, FL, USA (2003)Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to self-adaptive software. IEEE Intell. Syst. Their Appl. 14(3), 54–62 (1999)Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjørven, E.: Using Architecture Models for Runtime Adaptability. IEEE Software. 23(2), 62–70 (2006)Morin, B., Jézéquel, J.-M., Fleurey, F., Solberg, A.: Models at runtime to support dynamic adaptation. IEEE Comput. Soc. pp. 46–53 (2009)Cetina, C., Giner, P., Fons, J., Pelechano, V.: Using feature models for developing self-configuring smart homes. In: Fifth International Conference on Autonomic and Autonomous Systems, pp. 179–188. IEEE, Valencia, Spain (2009)Garlan, D., Schmerl, B.: Using architectural models at runtime: research challenges. In: Proceedings of the European Workshop on Software Architectures, pp. 200–205. Springer, Berlin, Heidelberg, St Andrews, UK (2004)Blumendorf, M., Lehmann, G., Feuerstack, S., Albayrak, S.: Executable models for human-computer interaction. In: Interactive Systems, Design, Specification, and Verification Workshop (DSV-IS 2008), pp. 238–251. Springer Berlin Heidelberg, Kingston, Canada (2008)Ballagny, C., Hameurlain, N., Barbier, F.: MOCAS: a state-based component model for self-adaptation. In: Third IEEE International Conference on Self-Adaptive and Self-Organizing Systems, pp. 206–215. IEEE, San Francisco, California (2009)Amoui, M., Derakhshanmanesh, M., Ebert, J., Tahvildari, L.: Achieving dynamic adaptation via management and interpretation of runtime models. J. Syst. Softw. 85(12), 2720–2737 (2012)Blair, G., Bencomo, N., France, R.B.: [email protected]. IEEE Comput. 42, 22–27 (2009)Zhang, J., Cheng, B.H.C.: Model based development of dynamically adaptive software. In: International Conference on Software Engineering (ICSE’06), pp. 371–380. ACM, Shanghai, China (2006
A Dynamic Contextual Change Management Application for Real Time Decision-Making Support
Decision making is a fundamental process within organizations for many reasons. It is indeed involved at all levels (new product decisions, management and marketing decisions, etc.) and has a direct impact on companies’ efficiency and effectiveness. Many researches are conducted to enhance the decision-making process by proposing decision support systems where the most frequent challenge is the change management. Indeed, all businesses operate within an environment that is subject to constant changes (like new customers’ needs and requirements, organisational and technological changes, changes in key information used to derive decisions, etc.). These changes have a major impact on the quality and accuracy of the proposed decision if they are not detected and propagated, at the right time, during the decision-making process. The present work attempts to resolve this challenge by proposing a dynamic change management technique that allows three tasks to be automatically performed. First, continuously detect changes and note them. Second, retrieve from the detected changes those that are related to the decision rules. Finally, propagate them by computing the new value of the decision rule. The proposal has been fully implemented and tested in the supervision process of gas network exploitation.projet FUI Gontran
OLAP queries context-aware recommender system
It becomes hard and tedious to easily obtain relevant decisional data in large data warehouses. In order to ease user exploration during on-line analytical processing analysis, recommender systems are developed. However some recommendations can be inappropriate (irrelevant queries or non-computable queries). To overcome these mismatches, we propose to integrate contextual data into the recommender system. In this paper, we provide (i) an indicator of obsolescence for OLAP queries and (ii) a context-aware recommender system based on a contextual post-filtering for OLAP queries
- …