31 research outputs found

    The Zinc-Finger Protein SOP1 Is Required for a Subset of the Nuclear Exosome Functions in Arabidopsis

    Get PDF
    Correct gene expression requires tight RNA quality control both at transcriptional and post-transcriptional levels. Using a splicing-defective allele of PASTICCINO2 (PAS2), a gene essential for plant development, we isolated suppressor mutations modifying pas2-1 mRNA profiles and restoring wild-type growth. Three suppressor of pas2 (sop) mutations modified the degradation of mis-spliced pas2-1 mRNA species, allowing the synthesis of a functional protein. Cloning of the suppressor mutations identified the core subunit of the exosome SOP2/RRP4, the exosome nucleoplasmic cofactor SOP3/HEN2 and a novel zinc-finger protein SOP1 that colocalizes with HEN2 in nucleoplasmic foci. The three SOP proteins counteract post-transcriptional (trans)gene silencing (PTGS), which suggests that they all act in RNA quality control. In addition, sop1 mutants accumulate some, but not all of the misprocessed mRNAs and other types of RNAs that are observed in exosome mutants. Taken together, our data show that SOP1 is a new component of nuclear RNA surveillance that is required for the degradation of a specific subset of nuclear exosome targets. [Correction available at https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005958

    Turning the Table: Plants Consume Microbes as a Source of Nutrients

    Get PDF
    Interactions between plants and microbes in soil, the final frontier of ecology, determine the availability of nutrients to plants and thereby primary production of terrestrial ecosystems. Nutrient cycling in soils is considered a battle between autotrophs and heterotrophs in which the latter usually outcompete the former, although recent studies have questioned the unconditional reign of microbes on nutrient cycles and the plants' dependence on microbes for breakdown of organic matter. Here we present evidence indicative of a more active role of plants in nutrient cycling than currently considered. Using fluorescent-labeled non-pathogenic and non-symbiotic strains of a bacterium and a fungus (Escherichia coli and Saccharomyces cerevisiae, respectively), we demonstrate that microbes enter root cells and are subsequently digested to release nitrogen that is used in shoots. Extensive modifications of root cell walls, as substantiated by cell wall outgrowth and induction of genes encoding cell wall synthesizing, loosening and degrading enzymes, may facilitate the uptake of microbes into root cells. Our study provides further evidence that the autotrophy of plants has a heterotrophic constituent which could explain the presence of root-inhabiting microbes of unknown ecological function. Our discovery has implications for soil ecology and applications including future sustainable agriculture with efficient nutrient cycles

    Analysis of the Plant bos1 Mutant Highlights Necrosis as an Efficient Defence Mechanism during D. dadantii/Arabidospis thaliana Interaction

    Get PDF
    Dickeya dadantii is a broad host range phytopathogenic bacterium provoking soft rot disease on many plants including Arabidopsis. We showed that, after D. dadantii infection, the expression of the Arabidopsis BOS1 gene was specifically induced by the production of the bacterial PelB/C pectinases able to degrade pectin. This prompted us to analyze the interaction between the bos1 mutant and D. dadantii. The phenotype of the infected bos1 mutant is complex. Indeed, maceration symptoms occurred more rapidly in the bos1 mutant than in the wild type parent but at a later stage of infection, a necrosis developed around the inoculation site that provoked a halt in the progression of the maceration. This necrosis became systemic and spread throughout the whole plant, a phenotype reminiscent of that observed in some lesion mimic mutants. In accordance with the progression of maceration symptoms, bacterial population began to grow more rapidly in the bos1 mutant than in the wild type plant but, when necrosis appeared in the bos1 mutant, a reduction in bacterial population was observed. From the plant side, this complex interaction between D. dadantii and its host includes an early plant defence response that comprises reactive oxygen species (ROS) production accompanied by the reinforcement of the plant cell wall by protein cross-linking. At later timepoints, another plant defence is raised by the death of the plant cells surrounding the inoculation site. This plant cell death appears to constitute an efficient defence mechanism induced by D. dadantii during Arabidopsis infection

    The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses

    Get PDF
    Plants actively perceive and respond to perturbations in their cell walls which arise during growth, biotic and abiotic stresses. However, few components involved in plant cell wall integrity sensing have been described to date. Using a reverse-genetic approach, we identified the Arabidopsis thaliana leucine-rich repeat receptor kinase MIK2 as an important regulator of cell wall damage responses triggered upon cellulose biosynthesis inhibition. Indeed, loss-of-function mik2 alleles are strongly affected in immune marker gene expression, jasmonic acid production and lignin deposition. MIK2 has both overlapping and distinct functions with THE1, a malectin-like receptor kinase previously proposed as cell wall integrity sensor. In addition, mik2 mutant plants exhibit enhanced leftward root skewing when grown on vertical plates. Notably, natural variation in MIK2 (also named LRR-KISS) has been correlated recently to mild salt stress tolerance, which we could confirm using our insertional alleles. Strikingly, both the increased root skewing and salt stress sensitivity phenotypes observed in the mik2 mutant are dependent on THE1. Finally, we found that MIK2 is required for resistance to the fungal root pathogen Fusarium oxysporum. Together, our data identify MIK2 as a novel component in cell wall integrity sensing and suggest that MIK2 is a nexus linking cell wall integrity sensing to growth and environmental cues

    The Arabidopsis CURVY1 (CVY1) gene encoding a novel receptor-like protein kinase regulates cell morphogenesis, flowering time and seed production

    No full text
    BACKGROUND: A molecular-level understanding of the loss of CURVY1 (CVY1) gene expression (which encodes a member of the receptor-like protein kinase family) was investigated to gain insights into the mechanisms controlling cell morphogenesis and development in Arabidopsis thaliana. RESULTS: Using a reverse genetic and cell biology approaches, we demonstrate that CVY1 is a new DISTORTED gene with similar phenotypic characterization to previously characterized ARP2/3 distorted mutants. Compared to the wild type, cvy1 mutant displayed a strong distorted trichome and altered pavement cell phenotypes. In addition, cvy1 null-mutant flowers earlier, grows faster and produces more siliques than WT and the arp2/3 mutants. The CVY1 gene is ubiquitously expressed in all tissues and seems to negatively regulate growth and yield in higher plants. CONCLUSIONS: Our results suggest that CURVY1 gene participates in several biochemical pathways in Arabidopsis thaliana including (i) cell morphogenesis regulation through actin cytoskeleton functional networks, (ii) the transition of vegetative to the reproductive stage and (iii) the production of seeds. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-014-0221-7) contains supplementary material, which is available to authorized users
    corecore