322 research outputs found

    Impact of killer-immunoglobulin-like receptor and human leukocyte antigen genotypes on the efficacy of immunotherapy in acute myeloid leukemia

    Get PDF
    Interactions between killer-immunoglobulin-like receptors (KIRs) and their HLA class I ligands are instrumental in natural killer (NK) cell regulation and protect normal tissue from NK cell attack. Human KIR haplotypes comprise genes encoding mainly inhibitory receptors (KIR A) or activating and inhibitory receptors (KIR B). A substantial fraction of humans lack ligands for inhibitory KIRs (iKIRs), that is, a 'missing ligand' genotype. KIR B/x and missing ligand genotypes may thus give rise to potentially autoreactive, unlicensed NK cells. Little is known regarding the impact of such genotypes in untransplanted acute myeloid leukemia (AML). For this study, NK cell phenotypes and KIR/HLA genotypes were determined in 81 AML patients who received immunotherapy with histamine dihydrochloride and low-dose IL-2 for relapse prevention (NCT01347996). We observed that presence of unlicensed NK cells impacted favorably on clinical outcome, in particular among patients harboring functional NK cells reflected by high expression of the natural cytotoxicity receptor (NCR) NKp46. Genotype analyses suggested that the clinical benefit of high NCR expression was restricted to patients with a missing ligand genotype and/or a KIR B/x genotype. These data imply that functional NK cells are significant anti-leukemic effector cells in patients with KIR/HLA genotypes that favor NK cell autoreactivity

    Two randomised phase II trials of subcutaneous interleukin-2 and histamine dihydrochloride in patients with metastatic renal cell carcinoma

    Get PDF
    Histamine inhibits formation and release of phagocyte-derived reactive oxygen species, and thereby protects natural killer and T cells against oxidative damage. Thus, the addition of histamine may potentially improve the efficacy of interleukin-2 (IL-2). Two randomised phase II trials of IL-2 with or without histamine dihydrochloride (HDC) in patients with metastatic renal cell carcinoma (mRCC) were run in parallel. A total of 41 patients were included in Manchester, UK and 63 in Aarhus, Denmark. The self-administered, outpatient regimen included IL-2 as a fixed dose, 18 MIU s.c. once daily, 5 days per week for 3 weeks followed by 2 weeks rest. Histamine dihydrochloride was added twice daily, 1.0 mg s.c., concomitantly with IL-2. A maximum of four cycles were given. The Danish study showed a statistically significant 1-year survival benefit (76 vs 47%, P=0.03), a trend towards benefit in both median survival (18.3 vs 11.4 months, P=0.07), time to PD (4.5 vs 2.2 months, P=0.13) and clinical benefit (CR+PR+SD) (58 vs 37%, P=0.10) in favour of IL-2/HDC, whereas the UK study was negative for all end points. Only three patients had grade 4 toxicity; however, two were fatal. A randomised phase III trial is warranted to clarify the potential role of adding histamine to IL-2 in mRCC

    Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation

    Get PDF
    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family

    Accumulation of natural killer cells after hepatic artery embolisation in the midgut carcinoid syndrome.

    Get PDF
    Eleven patients with disseminated midgut carcinoid tumour disease were subjected to hepatic artery embolisation. In six patients, lymphocytosis with a predominance of NK cells occurred and the cytotoxic activity of isolated lymphocytes increased. A relation between NK cell accumulation and subsequent radiological and biochemical response was observed, and it is suggested that anti-tumour mechanisms other than ischaemia may contribute to the therapeutic response in these patients

    Psychosocial and symbolic dimensions of the breast explored through a Visual Matrix

    Get PDF
    This article explores knowledge about the breast in the psychosocial interplay of lived experience, addressing a gap in empirical research on this highly gendered cultural trope and embodied organ. We present findings from a study that used a free-associative psychosocial method – the Visual Matrix – in order to stimulate, and capture expressions of, tacit aspects of the breast that have evaded discursive representation, as well as to generate understanding of relations between embodied and enculturated experience. Little research has been conducted on women’s affirmative experience of breasts, possibly because their bio-psycho-sociocultural complexity affords an onto-epistemological and empirical challenge. Our data revealed how an aesthetic of the grotesque in one matrix allowed the mainly female group to use humour as a “creative psychic defence” against culturally normative and idealised aspects of the breast. This was expressed through sensual symbolisations of breasted experience, affectively delivered with exuberance and joy. There was an emphasis on the breast’s potency and its potential for both abundant nurturance and potent “weaponisation”. By establishing this feminine poetic mode, Visual Matrix imagery symbolised life and death as tolerable, inseparable yet ambiguous dimensions of breasts, thereby resisting anxious splitting. The breast’s life-affirming qualities included the sensual, the visceral and the joyful – a materialsemiotic knowing. This was in marked contrast to a second matrix where associations were weighted towards the spectacular breast of an ocular-centric culture that privileges heteromasculine looking. This matrix reflected a more ambivalent and sometimes troubled response among participants. Reasons for the difference between the two matrices are discussed in terms of how they responded to the tension between embodied and enculturated experiences

    Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation.

    Get PDF
    α-Synuclein (α-syn) is a 140-residue intrinsically disordered protein that is involved in neuronal and synaptic vesicle plasticity, but its aggregation to form amyloid fibrils is the hallmark of Parkinson's disease (PD). The interaction between α-syn and lipid surfaces is believed to be a key feature for mediation of its normal function, but under other circumstances it is able to modulate amyloid fibril formation. Using a combination of experimental and theoretical approaches, we identify the mechanism through which facile aggregation of α-syn is induced under conditions where it binds a lipid bilayer, and we show that the rate of primary nucleation can be enhanced by three orders of magnitude or more under such conditions. These results reveal the key role that membrane interactions can have in triggering conversion of α-syn from its soluble state to the aggregated state that is associated with neurodegeneration and to its associated disease states.This work was supported by the UK BBSRC and the Wellcome Trust (CMD, TPJK, MV), the Frances and Augustus Newman Foundation (TPJK), Magdalene College, Cambridge (AKB) , St John’s College, Cambridge (TCTM), the Cambridge Home and EU Scholarship Scheme (GM), Elan Pharmaceuticals (CMD, TPJK, MV, CG) and the Leverhulme Trust (AKB).This is the accepted manuscript. The final version is available from NPG at http://www.nature.com/nchembio/journal/v11/n3/abs/nchembio.1750.htm

    Isolation and individual electrical stimulation of single smooth-muscle cells from the urinary bladder of the pig

    Get PDF
    In contrast to striated muscle, measurements on strips of smooth muscle cannot be uniquely interpreted in terms of an array of contractile units. Therefore scaling down to the single-cell level is necessary to gain detailed understanding of the contractile process in this type of muscle. The present study describes the development of a method for isolating contractile single smooth muscle cells from pig urinary bladders. Contractile responses evoked by individual electrical stimulation were used as a measure of cell quality during development of the method. Responses were evaluated by measuring latency, contraction and relaxation times, as indicated by visible length changes, and stored on-line in a computer. Initial length, relative shortening and shortening speed were determined by measuring cell lengths in previously timed still video frames using a computer-controlled crosshair device. Increase of stimulus pulse duration resulted in improved responses, indicating that the observed shortening represented a physiological contractile response. Ultimately this method of evaluation was applied to two sets of cell preparations obtained by two different methods, one using only collagenase digestion, the other using mechanical manipulation as well. Both sets showed two main patterns of response to electrical stimulation: a pattern of contraction upon stimulation followed by enhanced contraction when stimulation was switched off (CK), and a pattern of contraction upon stimulation followed by relaxation when the stimulus was switched off (CR). The set of preparations containing the highest percentage of CR cells was found to be superior (i.e. greater initial length, shorter latency and contraction times, increased shortening and higher shortening speed). The method of isolation used for this set gives a high yield of contractile cells available for experimental use over a long span of time

    Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits.

    Get PDF
    Interest in the use of engineered nanomaterials (ENMs) as either nanomedicines or dental materials/devices in clinical dentistry is growing. This review aims to detail the ultrafine structure, chemical composition, and reactivity of dental tissues in the context of interactions with ENMs, including the saliva, pellicle layer, and oral biofilm; then describes the applications of ENMs in dentistry in context with beneficial clinical outcomes versus potential risks. The flow rate and quality of saliva are likely to influence the behavior of ENMs in the oral cavity, but how the protein corona formed on the ENMs will alter bioavailability, or interact with the structure and proteins of the pellicle layer, as well as microbes in the biofilm, remains unclear. The tooth enamel is a dense crystalline structure that is likely to act as a barrier to ENM penetration, but underlying dentinal tubules are not. Consequently, ENMs may be used to strengthen dentine or regenerate pulp tissue. ENMs have dental applications as antibacterials for infection control, as nanofillers to improve the mechanical and bioactive properties of restoration materials, and as novel coatings on dental implants. Dentifrices and some related personal care products are already available for oral health applications. Overall, the clinical benefits generally outweigh the hazards of using ENMs in the oral cavity, and the latter should not prevent the responsible innovation of nanotechnology in dentistry. However, the clinical safety regulations for dental materials have not been specifically updated for ENMs, and some guidance on occupational health for practitioners is also needed. Knowledge gaps for future research include the formation of protein corona in the oral cavity, ENM diffusion through clinically relevant biofilms, and mechanistic investigations on how ENMs strengthen the tooth structure
    corecore