38 research outputs found

    Complete mitochondrial genome sequence of Urechis caupo, a representative of the phylum Echiura

    Get PDF
    BACKGROUND: Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although hundreds of these genome sequences have been reported, the taxonomic sampling is highly biased toward vertebrates and arthropods, with many whole phyla remaining unstudied. This is the first description of a complete mitochondrial genome sequence of a representative of the phylum Echiura, that of the fat innkeeper worm, Urechis caupo. RESULTS: This mtDNA is 15,113 nts in length and 62% A+T. It contains the 37 genes that are typical for animal mtDNAs in an arrangement somewhat similar to that of annelid worms. All genes are encoded by the same DNA strand which is rich in A and C relative to the opposite strand. Codons ending with the dinucleotide GG are more frequent than would be expected from apparent mutational biases. The largest non-coding region is only 282 nts long, is 71% A+T, and has potential for secondary structures. CONCLUSIONS: Urechis caupo mtDNA shares many features with those of the few studied annelids, including the common usage of ATG start codons, unusual among animal mtDNAs, as well as gene arrangements, tRNA structures, and codon usage biases

    What We Talk about When We Talk about Love: A Duoethnographic Exploration of the Dissertation Relationship

    Get PDF
    In the aftermath and mop-up following a successful dissertation defense, an unintended and unexpected data source remained unexplored and unanalyzed: 32 audio-recorded discussions and work sessions documenting the processes, approaches, and decisions made by a dissertation director and his doctoral candidate. What might those conversations reveal about the dissertation relationship? Taking a page from Raymond Carver’s short story, “What We Talk about When We Talk about Love,” we wondered what we might have been talking about when we were talking about dissertation writing. Inspired and shaped by Norris, Sawyer, and Lund’s (2012. Duoethnography: Dialogic methods for social, health, and educational research. Walnut Creek, CA: Left Coast Press.) duoethnographic methods, this study provides opportunity for us to not just look back on the journey, but pushes us into the messiness of “recalling and reconceptualizing” (p. 10). As we each “become the foil for the Other, challenging the Other to reflect on their own life in a deeper, more relational, and authentic manner” (Norris et al., 2012, p. 10) we also interrogate and trouble our own simplistic categories of analysis

    Matter, Literacy, and English Language Teaching in an Underprivileged School in Spain

    Get PDF
    This article analyzes the processes and findings of a collaborative action research (CAR) project that aimed to analyze the potential of materiality to radically transform the way English was taught and learned in an underprivileged public school in Spain. The CAR drew on new materialisms and new literacy studies to explore the relationship between matter and English language teaching from socioeconomic, sociocultural, and technological perspectives. The main pedagogical strategy consisted of widening the quantity and quality of the material resources in the English classroom, precisely to draw a material link between the English classroom and the students' homes, communities, and the informal literacies they enacted in them. Through two cycles of inquiry, the CAR team put into practice two multimodal and artifactual workshops with a group of nine children from underprivileged, minority backgrounds. A variety of qualitative strategies were used (including classroom recordings, student interviews, and photographs) to confirm that the insights from new materialisms and new literacy studies had generated opportunities for meaningful English learning within a culturally sustaining pedagogy

    Re-Shape: A Method to Teach Data Ethics for Data Science Education

    Get PDF
    Data has become central to the technologies and services that human-computer interaction (HCI) designers make, and the ethical use of data in and through these technologies should be given critical attention throughout the design process. However, there is little research on ethics education in computer science that explicitly addresses data ethics. We present and analyze Re-Shape, a method to teach students about the ethical implications of data collection and use. Re-Shape, as part of an educational environment, builds upon the idea of cultivating care and allows students to collect, process, and visualizetheir physical movement data in ways that support critical reflection and coordinated classroom activities about data, data privacy, and human-centered systems for data science. We also use a case study of Re-Shape in an undergraduate computer science course to explore prospects and limitations of instructional designs and educational technology such as Re-Shape that leverage personal data to teach data ethics

    Arthropod Phylogenetics in Light of Three Novel Millipede (Myriapoda: Diplopoda) Mitochondrial Genomes with Comments on the Appropriateness of Mitochondrial Genome Sequence Data for Inferring Deep Level Relationships

    Get PDF
    Background Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda. Results The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly). As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic. Conclusions The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic signal renders the resulting tree topologies as suspect. As such, these data are likely inappropriate for investigating such ancient relationships

    Evidence, Content and Corroboration and the Tree of Life

    Get PDF
    We examine three critical aspects of Popper’s formulation of the ‘Logic of Scientific Discovery’—evidence, content and degree of corroboration—and place these concepts in the context of the Tree of Life (ToL) problem with particular reference to molecular systematics. Content, in the sense discussed by Popper, refers to the breadth and scope of existence that a hypothesis purports to explain. Content, in conjunction with the amount of available and relevant evidence, determines the testability, or potential degree of corroboration, of a statement; content distinguishes scientific hypotheses from metaphysical assertions. Degree of corroboration refers to the relative and tentative confidence assigned to one hypothesis over another, based upon the performance of each under critical tests. Here we suggest that systematists attempt to maximize content and evidence to increase the potential degree of corroboration in all phylogenetic endeavors. Discussion of this “total evidence” approach leads to several interesting conclusions about generating ToL hypotheses

    The Multipartite Mitochondrial Genome of Liposcelis bostrychophila: Insights into the Evolution of Mitochondrial Genomes in Bilateral Animals

    Get PDF
    Booklice (order Psocoptera) in the genus Liposcelis are major pests to stored grains worldwide and are closely related to parasitic lice (order Phthiraptera). We sequenced the mitochondrial (mt) genome of Liposcelis bostrychophila and found that the typical single mt chromosome of bilateral animals has fragmented into and been replaced by two medium-sized chromosomes in this booklouse; each of these chromosomes has about half of the genes of the typical mt chromosome of bilateral animals. These mt chromosomes are 8,530 bp (mt chromosome I) and 7,933 bp (mt chromosome II) in size. Intriguingly, mt chromosome I is twice as abundant as chromosome II. It appears that the selection pressure for compact mt genomes in bilateral animals favors small mt chromosomes when small mt chromosomes co-exist with the typical large mt chromosomes. Thus, small mt chromosomes may have selective advantages over large mt chromosomes in bilateral animals. Phylogenetic analyses of mt genome sequences of Psocodea (i.e. Psocoptera plus Phthiraptera) indicate that: 1) the order Psocoptera (booklice and barklice) is paraphyletic; and 2) the order Phthiraptera (the parasitic lice) is monophyletic. Within parasitic lice, however, the suborder Ischnocera is paraphyletic; this differs from the traditional view that each suborder of parasitic lice is monophyletic

    The complete mitochondrial genome of Flustra foliacea (Ectoprocta, Cheilostomata) - compositional bias affects phylogenetic analyses of lophotrochozoan relationships

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The phylogenetic relationships of the lophophorate lineages, ectoprocts, brachiopods and phoronids, within Lophotrochozoa are still controversial. We sequenced an additional mitochondrial genome of the most species-rich lophophorate lineage, the ectoprocts. Although it is known that there are large differences in the nucleotide composition of mitochondrial sequences of different lineages as well as in the amino acid composition of the encoded proteins, this bias is often not considered in phylogenetic analyses. We applied several approaches for reducing compositional bias and saturation in the phylogenetic analyses of the mitochondrial sequences.</p> <p>Results</p> <p>The complete mitochondrial genome (16,089 bp) of <it>Flustra foliacea </it>(Ectoprocta, Gymnolaemata, Cheilostomata) was sequenced. All protein-encoding, rRNA and tRNA genes are transcribed from the same strand. <it>Flustra </it>shares long intergenic sequences with the cheilostomate ectoproct <it>Bugula</it>, which might be a synapomorphy of these taxa. Further synapomorphies might be the loss of the DHU arm of the tRNA L(UUR), the loss of the DHU arm of the tRNA S(UCN) and the unique anticodon sequence GAG of the tRNA L(CUN). The gene order of the mitochondrial genome of <it>Flustra </it>differs strongly from that of the other known ectoprocts. Phylogenetic analyses of mitochondrial nucleotide and amino acid data sets show that the lophophorate lineages are more closely related to trochozoan phyla than to deuterostomes or ecdysozoans confirming the Lophotrochozoa hypothesis. Furthermore, they support the monophyly of Cheilostomata and Ectoprocta. However, the relationships of the lophophorate lineages within Lophotrochozoa differ strongly depending on the data set and the used method. Different approaches for reducing heterogeneity in nucleotide and amino acid data sets and saturation did not result in a more robust resolution of lophotrochozoan relationships.</p> <p>Conclusion</p> <p>The contradictory and usually weakly supported phylogenetic reconstructions of the relationships among lophotrochozoan phyla based on mitochondrial sequences indicate that these alone do not contain enough information for a robust resolution of the relations of the lophotrochozoan phyla. The mitochondrial gene order is also not useful for inferring their phylogenetic relationships, because it is highly variable in ectoprocts, brachiopods and some other lophotrochozoan phyla. However, our study revealed several rare genomic changes like the evolution of long intergenic sequences and changes in the structure of tRNAs, which may be helpful for reconstructing ectoproct phylogeny.</p

    Population genomics of marine zooplankton

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Bucklin, Ann et al. "Population Genomics of Marine Zooplankton." Population Genomics: Marine Organisms. Ed. Om P. Rajora and Marjorie Oleksiak. Springer, 2018. doi:10.1007/13836_2017_9.The exceptionally large population size and cosmopolitan biogeographic distribution that distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated species and diversity of genomic architecture, including highly-replicated genomes of many crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is transforming our ability to analyze population genetics and connectivity of marine zooplankton, and providing new understanding and different answers than earlier analyses, which typically used mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that, despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are critically needed to allow further examination of micro-evolution and local adaptation, including identification of genes that show evidence of selection. These new tools will also enable further examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to discriminate genetic “noise” in large and patchy populations from local adaptation to environmental conditions and change.Support was provided by the US National Science Foundation to AB and RJO (PLR-1044982) and to RJO (MCB-1613856); support to IS and MC was provided by Nord University (Norway)

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore