293 research outputs found

    Concurrent in situ ion irradiation transmission electron microscope

    Get PDF
    AbstractAn in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30keV) during high-energy heavy ion irradiation (0.8–48MeV). Initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities

    Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions

    Get PDF
    We have investigated the effects of helium ion irradiation energy and sample temperature on the performance of grain boundaries as helium sinks in ultrafine grained and nanocrystalline tungsten. Irradiations were performed at displacement and non-displacement energies and at temperatures above and below that required for vacancy migration. Microstructural investigations were performed using Transmission Electron Microscopy (TEM) combined with either in-situ or ex-situ ion irradiation. Under helium irradiation at an energy which does not cause atomic displacements in tungsten (70 eV), regardless of temperature and thus vacancy migration conditions, bubbles were uniformly distributed with no preferential bubble formation on grain boundaries. At energies that can cause displacements, bubbles were observed to be preferentially formed on the grain boundaries only at high temperatures where vacancy migration occurs. Under these conditions, the decoration of grain boundaries with large facetted bubbles occurred on nanocrystalline grains with dimensions less than 60 nm. We discuss the importance of vacancy supply and the formation and migration of radiation-induced defects on the performance of grain boundaries as helium sinks and the resulting irradiation tolerance of ultrafine grained and nanocrystalline tungsten to bubble formatio

    Mechanical response of self-ion irradiated, single crystal, FCC micropillars

    Get PDF
    Increasing energy demands and regulations on cleaner and more efficient energy sources has reinvigorated research into next generation nuclear reactors. The safe and optimal operation of the various proposed reactors requires the cladding and structural metals to perform under a combination of extreme environments including radiation damage levels \u3e100 dpa. This presentation will highlight a rapid screening technique developed at Sandia National Laboratories to determine the relative merit of implementing various advanced structural alloys and composites in high radiation environments. In addition to an overview of the technique and the wealth of alloy systems it has been applied to, this presentation will focus on the detailed mechanisms that can be elucidated from the micropillar compression of ion irradiated single crystal copper and nickel. Single crystal Cu micropillars self-ion irradiated up to 190 dpa at the end of range were compressed along the \u3c110\u3e to 10% strain. To elucidate the interaction of different length scales on the mechanical response, three specimen configurations were explored: large 10 μm tall, intermediate 5 μm tall, and small 4 μm tall pillars. In a similar manner, pristine and self-ion irradiated \u3c111\u3e Ni pillars were subject to in-situ microcompression in a scanning electron microscope (SEM). By performing these experiments during real time SEM observation a direct correlation between the mechanical responses and the pillars’ structural evolution can be obtained. Specifically, the dynamics resulting from the defect free channel formation and subsequent localization can be associated with heterogeneous plastic flow. This presentation will highlight the multiple length scale effects that are active during the micropillar compression of self-ion irradiated, single crystal, FCC micropillars. These results will be discussed in the context of an end of range effect, a damage gradient effect, and size effects, as well as compared to other small scale mechanical testing methods of ion and neutron irradiated materials. Finally, the benefits and limitations of applying these methods to rapidly screen advanced materials for potential future nuclear reactor applications will be discussed. This study is supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000

    Neutrophil cannibalism – a back up when the macrophage clearance system is insufficient

    Get PDF
    BACKGROUND: During a lipopolysaccharide-induced lung inflammation, a massive accumulation of neutrophils occurs, which is normally cleared by macrophage phagocytosis following neutrophil apoptosis. However, in cases of extensive apoptosis the normal clearance system may fail, resulting in extensive neutrophil secondary necrosis. The aim of this study was to explore the hypothesis that neutrophils, in areas of the lung with extensive cellular infiltration, contribute to clearance by phagocytosing apoptotic cells and/or cell debris derived from secondary necrosis. METHODS: Intranasal lipopolysaccharide administration was used to induce lung inflammation in mice. The animals were sacrificed at seven time points following administration, bronchoalveolar lavage was performed and tissue samples obtained. Electron microscopy and histochemistry was used to assess neutrophil phagocytosis. RESULTS: Electron microscopic studies revealed that phagocytosing neutrophils was common, at 24 h after LPS administration almost 50% of the total number of neutrophils contained phagosomes, and the engulfed material was mainly derived from other neutrophils. Histochemistry on bronchoalvolar lavage cells further showed phagocytosing neutrophils to be frequently occurring. CONCLUSION: Neutrophils are previously known to phagocytose invading pathogens and harmful particles. However, this study demonstrates that neutrophils are also able to engulf apoptotic neutrophils or cell debris resulting from secondary necrosis of neutrophils. Neutrophils may thereby contribute to clearance and resolution of inflammation, thus acting as a back up system in situations when the macrophage clearance system is insufficient and/or overwhelmed

    Differential Expression of Melanopsin Isoforms Opn4L and Opn4S during Postnatal Development of the Mouse Retina

    Get PDF
    Photosensitive retinal ganglion cells (pRGCs) respond to light from birth and represent the earliest known light detection system to develop in the mouse retina. A number of morphologically and functionally distinct subtypes of pRGCs have been described in the adult retina, and have been linked to different physiological roles. We have previously identified two distinct isoforms of mouse melanopsin, Opn4L and Opn4S, which are generated by alternate splicing of the Opn4 locus. These isoforms are differentially expressed in pRGC subtypes of the adult mouse retina, with both Opn4L and Opn4S detected in M1 type pRGCs, and only Opn4L detected in M2 type pRGCs. Here we investigate the developmental expression of Opn4L and Opn4S and show a differential profile of expression during postnatal development. Opn4S mRNA is detected at relatively constant levels throughout postnatal development, with levels of Opn4S protein showing a marked increase between P0 and P3, and then increasing progressively over time until adult levels are reached by P10. By contrast, levels of Opn4L mRNA and protein are low at birth and show a marked increase at P14 and P30 compared to earlier time points. We suggest that these differing profiles of expression are associated with the functional maturation of M1 and M2 subtypes of pRGCs. Based upon our data, Opn4S expressing M1 type pRGCs mature first and are the dominant pRGC subtype in the neonate retina, whereas increased expression of Opn4L and the maturation of M2 type pRGCs occurs later, between P10 and P14, at a similar time to the maturation of rod and cone photoreceptors. We suggest that the distinct functions associated with these cell types will develop at different times during postnatal development

    Bright green light treatment of depression for older adults [ISRCTN69400161]

    Get PDF
    BACKGROUND: Bright white light has been successfully used for the treatment of depression. There is interest in identifying which spectral colors of light are the most efficient in the treatment of depression. It is theorized that green light could decrease the intensity duration of exposure needed. Late Wake Treatment (LWT), sleep deprivation for the last half of one night, is associated with rapid mood improvement which has been sustained by light treatment. Because spectral responsiveness may differ by age, we examined whether green light would provide efficient antidepressant treatment in an elder age group. METHODS: We contrasted one hour of bright green light (1,200 Lux) and one hour of dim red light placebo (<10 Lux) in a randomized treatment trial with depressed elders. Participants were observed in their homes with mood scales, wrist actigraphy and light monitoring. On the day prior to beginning treatment, the participants self-administered LWT. RESULTS: The protocol was completed by 33 subjects who were 59 to 80 years old. Mood improved on average 23% for all subjects, but there were no significant statistical differences between treatment and placebo groups. There were negligible adverse reactions to the bright green light, which was well tolerated. CONCLUSION: Bright green light was not shown to have an antidepressant effect in the age group of this study, but a larger trial with brighter green light might be of value

    Weight-loss intervention using implementation intentions and mental imagery: A randomised control trial study protocol

    Get PDF
    Background: Overweight and obesity are major health problems worldwide. This protocol describes the HEALTHI (Healthy Eating and Active LifesTyle Health Intervention) Program, a 12-week randomised-controlled weight-loss intervention that adopts two theory-based intervention techniques, mental imagery and implementation intentions, a behaviour-change technique based on planning that have been shown to be effective in promoting health-behaviour change in previous research. The effectiveness of goal-reminder text messages to augment intervention effects will also be tested. The trial will determine the effects of a brief, low cost, theory-based weight-loss intervention to improve dietary intake and physical activity behaviour and facilitate weight-loss in overweight and obese individuals. Methods/Design: Overweight or obese participants will be randomly allocated to one of three conditions: (1) a psycho-education plus an implementation intentions and mental imagery condition; (2) a psycho-education plus an implementation intentions and mental imagery condition with text messages; or (3) a psycho-education control condition. The intervention will be delivered via video presentation to increase the intervention's applicability in multiple contexts and keep costs low. We hypothesise that the intervention conditions will lead to statistically-significant changes in the primary and secondary outcome variables measured at 6 and 12 weeks post-intervention relative to the psycho-education control condition after controlling for baseline values. The primary outcome variable will be body weight and secondary outcome variables will be biomedical (body mass, body fat percentage, muscle mass, waist-hip circumference ratio, systolic and diastolic blood pressure, low-density lipoprotein, high-density lipoprotein, total cholesterol, triglycerides, blood glucose and insulin levels), psychological (quality of life, motivation, risk perception, outcome expectancy, intention, action self-efficacy, maintenance self-efficacy, goal setting and planning), and behavioural (self-reported diet intake, and physical activity involvement) measures. We also expect the intervention condition augmented with text messages to lead to statistically significant differences in the primary and secondary outcome variables at the follow up periods after controlling for baseline values. Discussion: The planned trial will test the effectiveness of the theory-based HEALTHI program intervention to reduce weight and salient psychological, biomedical, and behavioural outcomes in overweight and obese adults. The study has been designed to maximise applicability to real world settings and could be integrated into existing weight management practices

    Brain Responses to Violet, Blue, and Green Monochromatic Light Exposures in Humans: Prominent Role of Blue Light and the Brainstem

    Get PDF
    BACKGROUND: Relatively long duration retinal light exposure elicits nonvisual responses in humans, including modulation of alertness and cognition. These responses are thought to be mediated in part by melanopsin-expressing retinal ganglion cells which are more sensitive to blue light than violet or green light. The contribution of the melanopsin system and the brain mechanisms involved in the establishment of such responses to light remain to be established. METHODOLOGY/PRINCIPAL FINDINGS: We exposed 15 participants to short duration (50 s) monochromatic violet (430 nm), blue (473 nm), and green (527 nm) light exposures of equal photon flux (10(13)ph/cm(2)/s) while they were performing a working memory task in fMRI. At light onset, blue light, as compared to green light, increased activity in the left hippocampus, left thalamus, and right amygdala. During the task, blue light, as compared to violet light, increased activity in the left middle frontal gyrus, left thalamus and a bilateral area of the brainstem consistent with activation of the locus coeruleus. CONCLUSION/SIGNIFICANCE: These results support a prominent contribution of melanopsin-expressing retinal ganglion cells to brain responses to light within the very first seconds of an exposure. The results also demonstrate the implication of the brainstem in mediating these responses in humans and speak for a broad involvement of light in the regulation of brain function
    corecore