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ABSTRACT 

 

Pro-inflammatory cytokine release (IL-8, IL-6, TNFIL-1) by peripheral blood 

neutrophils (PBN), isolated from periodontitis patients (before/after therapy) and matched 

controls, was determined after 18h culture in the presence/absence of Escherichia coli 

LPS, opsonised Staphylococcus aureus, heat-killed Fusobacterium nucleatum and 

Porphyromonas gingivalis.  All cultures demonstrated differences in the amounts of each 

cytokine detected (P<0.0001), with a clear release pattern (IL-8>IL-6>TNFα=IL-1β). 

Median cytokine release from unstimulated patient neutrophils was consistently, but non-

significantly, higher than from control cells. Stimulated cytokine release from untreated 

patient neutrophils was also consistently higher than control cells.  This hyper-reactivity 

was significant for all tested cytokines when data for all stimuli were combined 

(P<0.016).  In terms of individual stimuli, significant hyper-reactivity was detected with 

LPS (IL-8; P<0.04), F. nucleatum (IL-8, TNF; P<0.05), opsonised S. aureus (IL-8, 

TNF, IL-1; P<0.05) and P. gingivalis (IL-8, IL-1; P<0.032). Cytokine production by 

patient neutrophils did not reduce following successful non-surgical periodontal therapy 

and, except for responses to F. nucleatum, the cytokine hyper-reactivity detected pre-

therapy was retained. These data demonstrate that chronic periodontitis is characterised 

by neutrophils that constitutively exhibit cytokine hyper-reactivity, the effects of which 

could modulate local and systemic inflammatory-immune responses and influence the 

risk and severity of periodontitis-associated systemic inflammatory diseases.  

 

Key words: Cytokine; interleukin; neutrophil; periodontitis; TNFα. 
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INTRODUCTION 

 

Chronic periodontitis is one of the most prevalent chronic inflammatory diseases of 

humans and in its most severe form is the sixth most prevalent disease of man, affecting 

11.2% of the global population and representing a substantial public health burden.1 The 

pathogenesis of chronic periodontitis is associated with a dysregulated host 

inflammatory-immune response to intra-oral plaque bacteria,2 which is responsible for 

the majority of periodontal tissue damage.3 A hyper-inflammatory neutrophil phenotype 

is considered central to the pathogenesis of chronic periodontitis4 and also many of the 

systemic inflammatory diseases associated with periodontitis including type-2 diabetes5 

and cardiovascular disease.6 As such, neutrophilic “hyper-inflammation” may represent 

one causal mechanism by which periodontitis contributes to co-morbidity. 

Coordination of inflammatory-immune responses including neutrophil function 

involves the release of locally-produced and systemically circulating cytokines.7 

Originally, monocytes and lymphocytes were regarded as the predominant source of pro-

inflammatory cytokines in inflammatory lesions with neutrophils thought to produce only 

IL-8.8 However, neutrophils themselves have been shown to release physiologically-

relevant concentrations of various cytokines including IL-8, IL-6, TNFα and IL-1β9-11 

and therefore play an active role in co-ordinating the inflammatory-immune response, in 

addition to their traditional antimicrobial activity.12 Given the large numbers of 

neutrophils in peripheral blood and that they represent the dominant inflammatory cell in 

the periodontal tissues during periodontitis, neutrophil cytokine release is likely to 

significantly impact on the host response locally and systemically, with the latter 

increasing the risk of co-morbidity. 

 There have been few studies of neutrophil-derived cytokines in the pathogenesis 

of periodontitis and related systemic disease, despite their potential importance. The 

majority of studies investigating cytokines in chronic periodontitis have been performed 

on plasma, GCF and tissue biopsy samples, and have generally shown higher levels in 

disease. To date, there have been only three published studies investigating peripheral 

blood neutrophil cytokine release in patients with chronic periodontitis.13-15 Two studies 

demonstrated no significant difference in neutrophil IL-8, IL-1β and TNF-α release in 

chronic periodontitis compared to healthy controls in the absence or presence of GM-CSF 
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or opsonised S. aureus.13, 14 By contrast, the third study reported significantly reduced 

neutrophil IL-8 release from patient neutrophils compared to control cells in the presence 

and absence of LPS, phytohemagglutin (PHA), zymosan A, P. gingivalis or A. 

actinomycetemcomitans.15 All these studies used short culture times to determine 

cytokine production (<5 hr), which may have been too short to accurately determine 

neutrophil cytokine production. Although the specific mechanisms involved in neutrophil 

cytokine release are incompletely defined,16 neutrophils are not known to store cytokines 

and time would be required for their synthesis and activation of pro-cytokine molecules 

following stimulation and prior to release.17 

Type-2 diabetes displays a unique bi-directional relationship with chronic 

periodontitis, namely that chronic periodontitis is a risk factor for type-2 diabetes and 

vice-versa,18 with periodontal treatment reliably shown to improve glycaemic control.19 

Peripheral blood neutrophils isolated from diabetes patients have recently been shown to 

release greater amounts of IL-8, IL-1β and TNFα when cultured for 18 hr, in the presence 

and absence of LPS, than neutrophils isolated from healthy controls.5 To date, there are 

no studies investigating cytokine release, in the presence or absence of recognised 

periodontal pathogens, within an extended (18 hr) culture period, from neutrophils 

isolated from patients with chronic periodontitis.  Furthermore, there have been no studies 

on the effects of successful periodontal therapy on neutrophil cytokine production in 

periodontitis. 

Here we determined neutrophil cytokine release following 18 hr culture in the 

absence of and following stimulation with E. coli LPS, opsonised S. aureus and the 

periodontal pathogens, F. nucleatum and P. gingivalis. In addition, the effect of non-

surgical periodontal therapy and stabilisation of periodontal disease on neutrophil 

cytokine release was also investigated. Given the increasing awareness of the ability of 

neutrophils to secrete cytokines and co-ordinate the inflammatory-immune response, we 

hypothesised that increased cytokine release from peripheral blood neutrophils may be 

involved in the pathogenesis of chronic periodontitis and have a potential role in 

associated systemic diseases. 
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MATERIALS & METHODS 

 

Ethical approval 

Ethical approval was granted by the West Midlands Research Ethics Committee (REC 

reference no. 10/H1208/48). National Health Service (NHS) permission was granted by 

the Birmingham Community Healthcare NHS Trust on behalf of the Birmingham and the 

Black Country Comprehensive Local Research Network (BBC CLRN) Research 

Management & Governance (RM&G) Consortium Office (NHS R&D reference no. 

R&D1398; RM&G reference no. BCHCTDent265.1398.P). The study was adopted onto 

the National Institute of Health Research Network Portfolio (NIHR UKCRN Study ID 

10318). The study was also registered on ClinicalTrials.gov (Identifier NCT01233765). 

The study was classified as a clinical study and came under the Department of Health 

Research Governance Framework for Health and Social Care. 

 

Volunteer recruitment 

Volunteers diagnosed with chronic periodontitis (n=20) were recruited from patients 

referred to the Birmingham Dental Hospital for clinical evaluation and treatment (12 male 

and 8 female; mean age = 46+8 yrs, range 37-61 yr). Chronic periodontitis was defined 

as the presence of at least two non-adjacent sites with probing pocket depths >4mm, along 

with radiographic bone loss >30% of the root length (non-first molar or incisor sites) in 

accordance with the consensus criteria of the European Federation of Periodontology.20 

Age- and gender-matched periodontally healthy control volunteers (n=20) were recruited 

from Staff of the Birmingham Dental Hospital & School (12 male, 8 female; mean age = 

46+8 yrs, range 32-62 yr). There were no significant differences in patient and control 

volunteer age as determined by Mann-Whitney test. Control volunteers had no evidence 

of attachment loss, no probing pocket depths >4mm and whole-mouth bleeding scores 

<10%. All volunteers were never-smokers and systemically healthy as confirmed by a 

detailed medical history questionnaire.  

 

Periodontal assessment 

Clinical measures included probing pocket depth and recession using a PCP-UNC-15 

periodontal probe (Hu-Friedy Manufacturing Co., Chicago, IL). Bleeding on probing was 
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recorded in conjunction with the probing pocket depth measurements. Gingival 

inflammation was measured using the Löe gingival index.21 The presence of dental plaque 

was measured using the modified Quigley & Hein plaque index.22 All clinical measures 

were recorded on 6 sites per tooth (3 measurements on each of the buccal/labial and 

palatal/lingual thirds) by a single calibrated examiner at baseline and 2 months post-

therapy. 

 

Non-surgical periodontal therapy 

Patient volunteers received tailored oral hygiene instruction and conventional non-

surgical periodontal therapy by a single operator. This consisted of scaling and root 

surface debridement (RSD) of all periodontal pockets >4 mm performed under local 

anaesthesia on a quadrant-by-quadrant basis within a maximum of 4 weeks.  

 

Neutrophil isolation 

Peripheral blood was obtained from volunteers with chronic periodontitis and age-

/gender-matched controls before (baseline; n=20) and following conventional non-

surgical periodontal therapy (review; n=19). Blood was obtained between 09:00 and 

10:00 am from a patient and a matched healthy control volunteer within 30 minutes of 

each other. Blood was collected from the antecubital fossa into Vacutainers (Greiner, Bio-

One Ltd, Stonehouse, UK) containing lithium heparin (17 IU/ml) as anticoagulant. 

Neutrophils were isolated using a discontinuous Percoll gradient (δ = 1.079:1.098), 

followed by erythrocyte lysis (0.83 % NH4Cl containing 1 % KHCO3, 0.04 % 

Na2EDTA.2H2O and 0.25 % bovine serum albumin; 20 min). Isolated cells were >99 % 

polymorphonuclear cells morphologically and devoid of erythrocytes and monocytes. 

The absence of monocytes in cells prepared using this method has been confirmed 

previously within our laboratory by gene expression analyses.23 Giemsa stained cell 

smears24 also confirmed the presence of >99 % neutrophils in the cell preparation. 

Neutrophil isolation was performed at room temperature within a Biological Safety 

cabinet (Jouan Microbiological Safety Cabinet BS 5726) using aseptic technique.  
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Preparation of bacterial stimuli 

Fusobacterium nucleatum (Fn; ATCC 10953) and Porphyromonas gingivalis (Pg; ATCC 

33277) were grown anaerobically at 37oC as previously described.25 Staphylococcus 

aureus (NCTC 6571) was grown in air on mannitol salt agar and inoculated into tryptone 

soya broth. Bacteria were washed 3 times in sterile PBS and heat-treated (100 oC for 10 

min) prior to dilution with sterile PBS to give a final suspension of 8.5 x 109 and 4.12 x 

109 for F. nucleatum and P. gingivalis respectively, and stored at -80oC. The number of 

F. nucleatum and P. gingivalis in cell suspensions was determined by measuring the 

optical density at 600nm using conversion factors previously determined by the Forsyth 

Institute, Boston, USA (OD1.0
600nm = 1.62x109 for F. nucleatum and 1.69x109 for P. 

gingivalis).25 The bacterial density of S. aureus suspensions was determined by plate 

colony counting. Opsonised S. aureus was prepared as previously described 26 and stored 

as a 1.1 x 1011 cells/ml suspension at -80oC. Escherichia coli serotype O26:B6 

lipopolysaccharide (LPS; Sigma L5543) was supplied as a 1mg/ml, 0.2 µm filtered, 

aqueous solution as confirmed by the product information sheet.  

 

Neutrophil culture 

Freshly isolated neutrophils were immediately washed at room temperature in PBS prior 

to re-suspension in RPMI-1640 (Sigma R8758) supplemented with 0.3 g/l glutamine, 2.32 

g/l HEPES, 2g/l sodium bicarbonate, 100 µg/ml streptomycin, 100 IU/ml penicillin and 

10 % heat-inactivated fetal bovine serum. Neutrophils were cultured at 2.5 x 106 cells/ml 

(18 hr at 37oC and 5% CO2) in the presence of LPS (5µg/ml), F. nucleatum (MOI 100:1), 

P. gingivalis (MOI 100:1), opsonised S. aureus (MOI 300:1) or additional RPMI as 

negative control. Neutrophil viability was determined immediately before and after 18 hr 

culture by trypan blue dye exclusion.  

 

Determination of neutrophil cytokine release  

Following 18 hr culture, neutrophil cell culture supernatants were collected aseptically 

and stored at -80oC. Commercial enzyme-linked immunosorbent assay (ELISA) kits 

(R&D Systems, Abingdon, UK) were used to measure IL-8, IL-6, TNFα and IL-1β levels 

within the neutrophil culture supernatants. All samples were allowed to equilibrate to 

room temperature before use. Standards and samples were assayed in duplicate according 
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to the manufacturer’s instructions. All cytokine data were calculated to the nearest whole 

value in pg/ml due to the reported ELISA assay sensitivities and inter-assay variation 

(typically >1pg/ml) as specified within the product information sheets. 

 

Data handling and statistical analyses 

Data were recorded and manipulated in Microsoft Excel and evaluated using GraphPad 

Prism 5 (version 5.04; GraphPad Software, La Jolla, CA, USA). Data distribution was 

determined using the Kolmogorov-Smirnov test. Differences in probing pocket depths, 

the only dataset found to be normally distributed, were determined by ANOVA followed 

by Tukey-Kramer multiple comparisons test.  All other statistical comparisons were 

performed using non-parametric methods as indicated in the text and/or figures/tables. 

Except for probing pocket depths, all data were reported as median and interquartile 

range. In order to assist graphical representation of the cytokine data, “outliers” were 

determined (calculated as >1.5x interquartile range)27 and plotted outside the boxplot, 

with the most extreme values above the y-axis maximum. All cytokine concentrations, 

including outlying values, were included in all statistical analyses. 
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RESULTS 

 

Longitudinal changes in clinical measures 

The success of non-surgical periodontal therapy was confirmed by improvements in all 

clinical measures of the disease at the 2 month post treatment review (Table 1; P<0.05). 

At review, there were no significant differences between patient and control volunteers 

regarding the percentage of sites exhibiting bleeding on probing or the gingival and 

plaque indices. However, patient volunteers continued to demonstrate greater mean 

probing pocket depths and number of sites >4 mm (P<0.01), despite significantly 

reducing from their baseline pre-treatment values (P<0.05).  

 

Neutrophil viability following culture 

There were no significant differences in neutrophil viability following 18 hr culture 

between patient (mean 97.7 + 2.3%; range 94.1–100%) and control cells (mean 97.5 + 

1.8%; range 93.5–100%; data not shown). However, neutrophil viability in the presence 

of opsonised S. aureus (mean 95.4 + 2.8%; range 90.9–100%) was significantly lower 

than in cultures containing additional RPMI or other stimuli (mean 98.9 + 0.4%; range 

98.4–99.2%; P<0.05; Friedman/Dunn’s test). 

 

Unstimulated neutrophil cytokine release 

Cytokine release from essentially unstimulated neutrophils cultured in the presence of 

additional RPMI (vehicle control) is shown in Table 2. At both baseline and review there 

were significant differences in the amounts of each cytokine detected in the 18 hr culture 

supernatants irrespective of whether they were patient or control cells (P<0.0001; 

Friedman test), with a clear pattern of release (IL-8>IL-6>TNFα=IL-1β).  However there 

was considerable individual variation in cytokine release as evidenced by the interquartile 

ranges in relation to the median. Overall, the levels of all cytokines released from patient 

neutrophils were higher than those from controls. This difference was not significant 

when comparing data for all cytokines combined (i.e. total cytokine production) or 

individual cytokines, except at review, when patient cells released higher amounts of IL-

6 than control neutrophils (P=0.033; Table 2).  However, this latter difference coincided 
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with a significant decrease in detectable IL-6 release from control cells at review 

(P=0.03). 

 

Stimulated neutrophil cytokine release 

Neutrophils demonstrated a positive cytokine response to all stimuli employed (IL-8, 

TNF & IL-1, P<0.0004; IL-6, P<0.0012; Figures 1-4).  

Initially, the IL-8, IL-6, TNFα and IL-1β data for all stimuli combined were 

analysed to reflect the multiple host and plaque-associated factors capable of stimulating 

neutrophils. Combined stimulated cytokine levels from patient cells were consistently 

higher than from control cells both at baseline and review (P<0.016; Table 3) with no 

significant differences between baseline and review visits for control or patient cells with 

the exception of a significant increase in TNFα release by patient cells at review 

(P=0.007; Table 4). In agreement with unstimulated cytokine release, there were 

significant differences in the amounts of each cytokine detected in the 18 hr culture 

supernatants of patient and control cells following stimulation (P<0.0001 for baseline and 

review; Kruskal-Wallis test) with a similar pattern of release (IL-8>IL-6>TNFα=IL-1β).  

At both baseline and review the median levels of all 4 cytokines released were 

highest from patient cells irrespective of which stimulus was used (Figures 1-4).  When 

analysing the data for individual stimuli, several therapy-/stimulus-related differences 

between cytokine release from patient and control cells were detected (Figures 1-4 & 

summarised in Table 4).  Patient neutrophils released greater amounts of IL-8 and TNFα 

than controls in the presence of the periodontopathogen F. nucleatum at baseline 

(P<0.05), with no significant differences at post-treatment review.  However, this 

apparent therapy-related change was not reflected by a significant reduction in cytokine 

production by patient cells post-therapy. By contrast, heightened FcγR-stimulated 

neutrophil IL-8, TNF-α and IL-1 release was a consistent feature of periodontitis 

neutrophils at both baseline (P<0.05) and review (P<0.023).  Furthermore, greater release 

of IL-8 and IL-1 by patient cells was also a consistent feature after stimulation with P. 

gingivalis (baseline, P<0.032; review, P<0.036), as was production of IL-8 in response 

to E. coli LPS (baseline, P=0.038; review, P=0.015). 

Release of IL-8, IL-6 and IL-1 by patient cells was unaffected by therapy.  

However, TNF release by patient cells in response to opsonised S. aureus (P=0.015) 
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and P. gingivalis (P=0.035) was significantly higher at the post therapy review, as was 

TNF production when combining the data for all stimuli (P=0.007; Table 4).  
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DISCUSSION 

 

The data from this study demonstrate, for the first time, that peripheral blood neutrophils 

from patients with chronic periodontitis release greater amounts of cytokines (IL-8, IL-6, 

TNFα and IL-1β) compared to those from healthy individuals and exhibit a hyper-reactive 

phenotype in terms of cytokine production in response to a variety of stimuli, including 

the periodontitis-associated periodontal bacteria, P. gingivalis and F. nucleatum.  

Furthermore, this is the first longitudinal intervention study analysing the impact of 

therapeutic reductions in periodontal inflammation on the ability of peripheral blood 

neutrophils to generate cytokines in the presence and absence of periodontally relevant 

stimuli. In most instances, the observed cytokine hyper-reactivity of patient neutrophils 

and their ability to release cytokines was not altered by successful non-surgical therapy.  

Together, these novel data are consistent with current literature highlighting a 

dysregulated neutrophil phenotype in chronic periodontitis pathogenesis and are 

significant because cytokines regulate many different aspects of the inflammatory-

immune response known to be altered in periodontitis28 including neutrophil reactive 

oxygen species (ROS) generation,29, 30 extracellular trap (NET) release31 and directional 

chemotactic accuracy.32  

Although median levels of unstimulated cytokine release were highest for patient 

cells, the difference, compared to control cell levels, was not significant for either the 

combined or individual cytokine data, except for IL-6 at review. This latter result was due 

to a significant decrease in control neutrophil IL-6 release at review compared to baseline, 

despite no known intervention between the sampling visits.  Thus, our 18 hour culture 

data do not provide evidence that unstimulated peripheral blood neutrophils from 

periodontitis patients are hyperactive in terms of baseline, unstimulated cytokine release 

and agree with two reports using shorter (1-5h) culture times.13, 14
 By contrast, the 

reported 4-6 times lower unstimulated release of IL-8 from patient cells compared to 

control neutrophils, where none of the cells responded to stimuli including E. coli LPS 

and zymosan A15, is not supported. However, further studies on larger numbers are 

required to determine whether the generally higher median release of cytokines by patient 

cells reported here would become statistically significant.  This is of potential importance 

because even small differences in “baseline”, unstimulated cytokine release may be 
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biologically important in the pathogenesis of periodontitis, given the large numbers of 

systemic and locally recruited neutrophils within the periodontium and the chronic nature 

of the disease.   

Although cytokine hyperactivity (increased cytokine release in the absence of 

stimulation) was not statistically significant, greater stimulated IL-8, IL-6, TNFα and IL-

1β release from patient compared to control neutrophils was a consistent feature when 

comparing data for all stimuli combined demonstrating that patient cells are hyper-

reactive in terms of cytokine production. While these analyses of cytokine responses to 

multiple stimuli suggest that patient neutrophils will be hyper-reactive to the many host 

and plaque-associated factors known to be simultaneously present within periodontal 

tissues and blood,33 it is important to remember that our data are based on summation of 

cytokine release stimulated by individual stimuli rather than responses to the combined 

stimuli. 

The pattern of stimulated cytokine responses by neutrophils from patient cells 

varied according to the individual stimulus and cytokine investigated. Untreated patient 

neutrophils released significantly greater amounts of IL-8 in response to all tested stimuli 

compared to control cells.  By contrast, there were no significant differences in stimulated 

IL-6 release between patient and control cells for any of the stimuli.  TNFα and IL-1β 

release by patient cells showed an intermediate response profile showing hyper-reactivity 

to opsonised S. aureus (TNFα & IL-1β), F. nucleatum (TNF) and P. gingivalis (IL-1).     

The FcγR-stimulated IL-8, TNFα and IL-1β hyper-reactivity presented in this 

study contrasts with the lack of significant differences between periodontitis and control 

neutrophils previously reported (Fredriksson et al. 2002). However, Fredriksson et al. 

utilised a 5 hr culture time and detected only low levels of FcγR-stimulated IL-8 (range 

16-64 pg/ml) and TNFα (range 13-248 pg/ml).  By comparison, high levels of cytokine 

were detected in this study (stimulated ranges: IL-8, 496-118466 pg/ml; TNFα, 2-8326 

pg/ml) using an 18 hr culture period, a time known to correspond to that required for the 

majority of stimulated neutrophil IL-8, IL-6, TNFα and IL-1β to be released (16-18 hr).34, 

35  Similarly, the significantly greater E. coli LPS and P. gingivalis-stimulated IL-8 

release from patient compared to control neutrophils presented here contrasts with a study 

reporting lower E. coli LPS and P. gingivalis-stimulated IL-8 release from periodontitis 

neutrophils.15 However, this latter study only used a 1 hr culture time and failed to 
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demonstrate stimulation of control neutrophils, which produced extremely high levels of 

IL-8 (~800ng) in the absence of stimulation.  

This is the first known study to investigate the effect of successful periodontal 

treatment on peripheral blood neutrophil cytokine release. There were no detectable 

changes in IL-8, IL-6 or IL-1β production by patient neutrophils at the post-therapy 

review, indicating that any neutrophil cytokine hyperactivity/-reactivity detected was 

constitutive rather than being secondary to the inflammatory process. Indeed, significant 

differences between patient and control cell release of IL-8, IL-6 and IL-1 detected pre-

therapy were also demonstrated post-therapy, except for F. nucleatum-stimulated IL-8.  

This finding contrasts with data on FcγR-stimulated neutrophil ROS hyper-reactivity in 

periodontitis, which is not detectable following treatment.30  In contrast to IL-8, IL-6 or 

IL-1β, a therapy-related increase in TNF release by patient cells was detected when 

analysing responses to opsonised S. aureus, P. gingivalis and all stimuli combined. 

Although this change had no positive effect on TNF hyper-reactivity detected at pre-

therapy baseline, it is difficult to explain why reducing the inflammatory burden to the 

body, by reducing the periodontal bacterial load and inflammation, should apparently 

increase stimulated TNFα production by patient neutrophils. 

In terms of periodontitis, an important and novel finding was the consistent IL-8 

and IL-1 hyper-reactivity of patient cells to P. gingivalis, a bacterium strongly 

associated with chronic periodontitis.36   Porphyromonas gingivalis LPS is structurally 

distinct from other sources of LPS,37 induces cytokine production via different signalling 

mechanisms38 and is heterogenous, with some P. gingivalis LPS molecules binding to 

TLR-2, others to TLR-4 and, possibly, also to receptor antagonists.39, 40 Taken together, 

a constitutive defect in TLR receptor or downstream signalling relating to IL-8 and IL-1β 

release may explain the persistent hyper-reactive P. gingivalis-stimulated cytokine 

release from patient compared to control neutrophils detected in this study. 

In contrast to the response to P. gingivalis, neutrophil hyper-reactivity to F. 

nucleatum, a bacterium known to be important in plaque associated with periodontitis,36, 

41 was detected before treatment (IL-8 & TNF) but could not be demonstrated post-

therapy.  As patient levels of both cytokines were not lowered after treatment, this 

apparent loss of hyper-reactivity cannot be attributed to reduced periodontal bacterial load 
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and inflammation. Further studies are obviously required to determine the significance of 

these observations.      

Dysregulated neutrophil cytokine release, namely cytokine hyper-reactivity to 

periodontal pathogens and FcγR activation, could have a number of different 

consequences on the inflammatory-immune response in relation to the pathogenesis of 

chronic periodontitis. Greater neutrophil IL-8, IL-6, and TNFα release may result in 

neutrophil priming for greater ROS release.42, 43 Increased extracellular ROS release may 

then result in collateral host tissue damage as a result of osteoclast activation causing 

bone resorption44 in addition to degradation of type I collagen of the periodontal 

ligament.45 Neutrophil ROS and IL-8 release will also result in NET formation46, 47 which, 

if excessive, may result in the generation of autoantibodies48 along with impairing the 

inflammatory-immune response by sequestering local cytokine dissemination.49 

Heightened release of IL-8, IL-6, TNFα and IL-1β by neutrophils could also trigger 

neutrophil antimicrobial enzyme and granule protein release with the potential to cause 

destruction of adjacent periodontal connective tissue.50 

In addition to the above, there are a variety of indirect effects of dysregulated 

neutrophil cytokine release that could impact on the pathogenesis of chronic periodontitis. 

For example, neutrophil IL-8 release is likely to affect concurrent neutrophil chemotaxis 

and recruitment within the periodontal tissues.51 Our group have demonstrated that 

peripheral blood neutrophils from periodontitis patients display impaired directional 

chemotactic accuracy32 and, in this patient and control cohort, we have shown a moderate 

positive correlation between neutrophil IL-8 release and chemotactic index towards 

fMLP, suggesting that neutrophil IL-8 release may assist with neutrophil chemotaxis 

towards bacterial-derived chemo-attractants (Ling MR, Chapple IL, Roberts HM., 

Matthews JB, unpublished observations). In addition, any adaptive immune response will 

be heightened by IL-8, IL-6 and TNFα resulting in T-cell activation which is also directly 

influenced by IL-6.52 The generation of antibodies and bacterial opsonisation will result 

in FcγR-stimulated neutrophil activation thereby further exacerbating the inflammatory-

immune response in relation to the persistent FcγR-stimulated IL-8, IL-6, IL-1β and 

TNFα release and FcγR-stimulated neutrophil ROS hyper-reactivity in chronic 

periodontitis.30 
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Overall, the data presented in this study demonstrate that neutrophils from 

untreated periodontitis patients are hyper-reactive to a variety of disease-associated 

stimuli with regards to IL-8, IL-6, TNFα and IL-1β release compared to cells from healthy 

control individuals.  Furthermore, production of cytokines by patient cells was not 

reduced after successful non-surgical periodontal therapy and, except for responses to F. 

nucleatum, cytokine hyper-reactivity detected pre-therapy was shown to be retained.  

These data suggest that neutrophil cytokine hyper-reactivity is not secondary to the 

inflammatory reaction within the periodontal tissues during periodontal disease but is the 

result of constitutive differences in neutrophils isolated from controls and periodontitis 

patients.  Such a difference in neutrophil reactivity could modulate both local and 

systemic inflammatory-immune responses and influence the risk and severity of 

periodontitis, as well as periodontitis-associated systemic inflammatory disease. 
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TABLE LEGENDS 

 

Table 1. 

Clinical measures of chronic periodontitis patients before (baseline; n=20) and 2 months 

after (review; n=19) non-surgical periodontal therapy and matched healthy controls 

(n=20).   One patient (no. 13) elected to discontinue participation in the study during the 

treatment phase of the study. Probing pocket depths [mean+SD] were compared by one-

way ANOVA followed by Tukey-Kramer multiple comparisons test. All other 

comparisons [median (IQ range)] were performed using Kruskal-Wallis test followed by 

Dunn’s multiple comparisons test.  

* comparison with controls   # comparison with chronic periodontitis before treatment 

 

Table 2. 

Unstimulated IL-8, IL-6, TNFα and IL-1β release (pg/ml) from patient (n=19) and control 

(n=19) neutrophils at baseline and review. Data presented as median (interquartile range) 

pg/ml.  For both patient and control cells at baseline and review, levels of IL-8 were 

higher than IL-6 (P<0.05), which were higher than TNFα and IL-1β (P<0.05).  There 

were no differences in levels of TNFα and IL-1β released (Dunn’s Test). * The only 

significant difference in unstimulated cytokine levels between patient & control cells was 

for IL-6 at review (P=0.033; Bonferroni corrected, 1-tailed Mann-Whitney). 

 

Table 3. 

Stimulated IL-8, IL-6, TNFα and IL-1β release (pg/ml) from patient (n=19) and control 

(n=19) neutrophils at baseline and review in the presence of E. coli LPS (5µg/ml), F. 

nucleatum (MOI 100:1), IgG-opsonised S. aureus (MOI 300:1) and P. gingivalis (MOI 

100:1). Individual cytokine data presented as median (interquartile range) pg/ml for all 

stimuli combined (baseline, n=75; review, n=76). For both patient and control cells at 

baseline and review, levels of IL-8 were higher than IL-6 (P<0.001), which were higher 

than TNFα and IL-1β (P<0.001).  There were no differences in levels of TNFα and IL-1β 

released (Dunn’s Test). # Bonferroni corrected, 1-tailed Mann-Whitney test. * P=0.007, 

Bonferroni corrected, 2-tailed Wilcoxon test. 
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Table 4. 

Differences in cytokine release between patient and control neutrophils at baseline and 

review in response to individual (n=19; n=18 for opsonised S. aureus at baseline) and 

combined stimuli (n=75 at baseline and n=76 at review) (↑, patient>control; ↔, patient = 

control; Bonferroni corrected, 1-tailed Mann-Whitney) and change in cytokine release 

post-therapy (↑, increase; , decrease; ↔, no change at review; Bonferroni corrected 2-

tailed Wilcoxon).  
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Clinical measure 
Chronic periodontitis patients Controls 

(n=20) Baseline (n=20) Review (n=19) 

Probing pocket depth 

(mm; mean + SD) 

3.0+0.8 
(P<0.001)* 

2.1+0.5 
(P<0.001)# 

1.5+0.4 

Number of probing pocket depths >4 mm 

(median; range) 

27 (5-91) 
(P<0.001)* 

7 (0-52) 
(P<0.05)# 

0 (0-4) 

Percentage of sites bleeding on probing 

(median; range) 

43 (16-87) 
(P<0.001)* 

14 (3-35) 
(P<0.001)# 

2 (0-39) 

Gingival index 

(median; range) 

2 (1-3) 
(P<0.001)* 

1 (0-1) 
(P<0.001)# 

1 (0-1) 

Plaque index 

(median; range) 

2 (1-3) 
(P<0.001)* 

1 (0-2) 
(P<0.001)# 

1 (0-2) 

 

Table 1. Clinical measures of chronic periodontitis patients before (baseline; n=20) and 2 months after (review; n=19) non-surgical 

periodontal therapy and matched healthy controls (n=20).   One patient (no. 13) elected to discontinue participation in the study during 

the treatment phase of the study. Probing pocket depths [mean+SD] were compared by one-way ANOVA followed by Tukey-Kramer 

multiple comparisons test. All other comparisons [median (IQ range)] were performed using Kruskal-Wallis test followed by Dunn’s multiple 

comparisons test.  

 

* comparison with controls   # comparison with chronic periodontitis before treatment 
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Cytokine 

Patient Control 

Baseline Review Baseline Review 

IL-8 
479 

(267-1073) 
518 

(295-1,988) 
300 

(117-642) 
260 

(177-1,288) 

IL-6 
82 

(37-107) 
36* 

(18-107) 

45 
(23-141) 

16* 

(11-53) 

TNFα 
8 

(4-12) 
8 

(3-14) 
6 

(1-10) 
6 

(4-12) 

IL-1β 
8 

(4-15) 
5 

(2-11) 
3 

(2-18) 
3 

(2-6) 

 

Table 2. Unstimulated IL-8, IL-6, TNFα and IL-1β release (pg/ml) from patient (n=19) and control (n=19) neutrophils at baseline 

and review. Data presented as median (interquartile range) pg/ml.  For both patient and control cells at baseline and review, levels of IL-8 

were higher than IL-6 (P<0.05), which were higher than TNF and IL-1 (P<0.05).  There were no differences in levels of TNF and IL-1 

released (Dunn’s Test).  * The only significant difference in unstimulated cytokine levels between patient & control cells was for IL-6 at 

review (P=0.033; Bonferroni corrected, 1-tailed Mann-Whitney). 
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Cytokine 

Patient Control 
Comparisons# between patient 

& control cytokine levels at: 

Baseline Review Baseline Review Baseline Review 

IL-8 
18,145 

(7,972-31,936) 
17,467 

(9,043-32,937) 
7,271 

(4,194-13,923) 
8,117 

(4,569-13,380) 
P<0.0001 P<0.0001 

IL-6 
379 

(159-785) 
356 

(139-900) 
200 

(88-474) 
232 

(119-374) 
P=0.004 P=0.01 

TNFα 97* 

(60-224) 

158* 

(60-346) 

69 
(32-127) 

83 
(54-155) 

P=0.016 P=0.008 

IL-1β 
72 

(31-139) 
73 

(26-161) 
34 

(21-92) 
33 

(18-74) 
P=0.002 P=0.002 

 

Table 3. Stimulated IL-8, IL-6, TNFα and IL-1β release (pg/ml) from patient (n=19) and control (n=19) neutrophils at baseline and 

review in the presence of E. coli LPS (5µg/ml), F. nucleatum (MOI 100:1), IgG-opsonised S. aureus (MOI 300:1) and P. gingivalis 

(MOI 100:1). Individual cytokine data presented as median (interquartile range) pg/ml for all stimuli combined (baseline, n=75; review, 

n=76). For both patient and control cells at baseline and review, levels of IL-8 were higher than IL-6 (P<0.001), which were higher than 

TNF and IL-1 (P<0.001).  There were no differences in levels of TNF and IL-1 released (Dunn’s Test).  # Bonferroni corrected, 1-tailed 

Mann-Whitney test.  * P=0.007, Bonferroni corrected, 2-tailed Wilcoxon test. 
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Cytokine Stimulus 

Difference in cytokine 
release between patient 

& control cells 

Change in 
cytokine release 
between baseline 

& review 

Pre-
therapy 
Baseline 

Post-
therapy 
Review 

Patient Control 

IL-8 

None (RPMI) ↔ ↔ ↔ ↔ 

E. coli LPS ↑ (P=0.038) ↑ (P=0.015) ↔ ↔ 

F. nucleatum ↑ (P=0.025) ↔ ↔ ↔ 

ops S. aureus ↑ (P=0.0002) ↑ (P<0.0001) ↔ ↔ 

P. gingivalis 

All stimuli 

↑ (P=0.029) 

↑ (P<0.0001) 

↑ (P=0.009) 

↑ (P<0.0001) 

↔ 

↔ 

↔ 

↔ 

IL-6 

None (RPMI) ↔ ↑ (P=0.033) ↔ (P=0.03) 

E. coli LPS ↔ ↔ ↔ ↔ 

F. nucleatum ↔ ↔ ↔ ↔ 

ops S. aureus ↔ ↑ (P=0.023) ↔ ↔ 

P. gingivalis 

All stimuli 

↔ 

↑ (P=0.004) 

↔ 

↑ (P=0.01) 

↔ 

↔ 

↔ 

↔ 

TNFα 

None (RPMI) ↔ ↔ ↔ ↔ 

E. coli LPS ↔ ↔ ↔ ↔ 

F. nucleatum ↑ (P=0.05) ↔ ↔ ↔ 

ops S. aureus ↑ (P=0.016) ↑ (P=0.009) ↑(P=0.016) ↔ 

P. gingivalis 

All stimuli 

↔ 

↑ (P=0.016) 

↔ 

↑ (P=0.008) 

↑(P=0.035) 

↑(P=0.007) 

↔ 

↔ 

IL-1β 

None (RPMI) ↔ ↔ ↔ ↔ 

E. coli LPS ↔ ↔ ↔ ↔ 

F. nucleatum ↔ ↔ ↔ ↔ 

ops S. aureus ↑ (P=0.046) ↑ (P=0.007) ↔ ↔ 
P. gingivalis 

All stimuli 

↑ (P=0.032) 

↑ (P=0.002) 

↑ (P=0.036) 

↑ (P=0.002) 

↔ 

↔ 

↔ 

↔ 

 

Table 4. Differences in cytokine release between patient and control neutrophils at 

baseline and review in response to individual (n=19; n=18 for opsonised S. aureus at 

baseline) and combined stimuli (n=75 at baseline and n=76 at review) (↑, patient>control; 

↔, patient = control; Bonferroni corrected, 1-tailed Mann-Whitney) and change in 

cytokine release post-therapy (↑, increase;  decrease; ↔, no change at review; 

Bonferroni corrected 2-tailed Wilcoxon).  
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FIGURE LEGENDS 

 

Figure 1. 

Stimulated IL-8 production by neutrophils at baseline, pre-treatment (n=19; n=18 for 

opsonised S. aureus) and review, post-treatment (n=19). Box and whisker plots showing 

median, interquartile range, maximum and minimum. Outliers (values >1.5xIQR) are 

shown as open circles (○) or, if above the y-axis maximum, solid circles (●).  P-values 

calculated using Bonferroni corrected 1-tailed Mann-Whitney test. Stimulated levels of 

IL-8 were significantly greater than those for RPMI control for all stimuli, at baseline and 

review, for both patient and control groups (P<0.0004; Bonferroni corrected, 1-tailed 

Wilcoxon test). 

 

Figure 2. 

Stimulated IL-6 production by neutrophils at baseline, pre-treatment (n=19; n=18 for 

opsonised S. aureus) and review, post-treatment (n=19). Box and whisker plots showing 

median, interquartile range, maximum and minimum. Outliers (values >1.5xIQR) are 

shown as open circles (○) or, if above the y-axis maximum, solid circles (●). P-values 

calculated using Bonferroni corrected, 1-tailed Mann-Whitney test. Stimulated levels of 

IL-6 were significantly greater than those for RPMI control for all stimuli, at baseline and 

review, for both patient and control groups (P<0.0012; Bonferroni corrected, 1-tailed 

Wilcoxon test). 

 

Figure 3. 

Stimulated TNFα production by neutrophils at baseline, pre-treatment (n=19; n=18 for 

opsonised S. aureus) and review, post-treatment (n=19). Box and whisker plots showing 

median, interquartile range, maximum and minimum. Outliers (values >1.5xIQR) are 

shown as open circles (○) or, if above the y-axis maximum, solid circles (●). P-values 

calculated using Bonferroni corrected, 1-tailed Mann-Whitney test. Stimulated levels of 

TNFα were significantly greater than those for RPMI control for all stimuli, at baseline 

and review, for both patient and control groups (P<0.0004; Bonferroni corrected, 1-tailed 

Wilcoxon test). 
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Figure 4. 

Stimulated IL-1β production by neutrophils at baseline, pre-treatment (n=19; n=18 for 

opsonised S. aureus) and review, post-treatment (n=19). Box and whisker plots showing 

median, interquartile range, maximum and minimum. Outliers (values >1.5xIQR) are 

shown as open circles (○) or, if above the y-axis maximum, solid circles (●). P-values 

calculated using Bonferroni corrected, 1-tailed Mann-Whitney test. Stimulated levels of 

IL-1β were significantly greater than those for RPMI control for all stimuli, at baseline 

and review, for both patient and control groups (P<0.0004; Bonferroni corrected, 1-tailed 

Wilcoxon test). 
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Figure 1. Stimulated IL-8 production by neutrophils at baseline, pre-treatment 

(n=19; n=18 for opsonised S. aureus) and review, post-treatment (n=19). Box and 

whisker plots showing median, interquartile range, maximum and minimum. Outliers 

(values >1.5xIQR) are shown as open circles (○) or, if above the y-axis maximum, solid 

circles (●).  P-values calculated using Bonferroni corrected 1-tailed Mann-Whitney test. 

Stimulated levels of IL-8 were significantly greater than those for RPMI control for all 

stimuli, at baseline and review, for both patient and control groups (P<0.0004; Bonferroni 

corrected, 1-tailed Wilcoxon test). 
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Figure 2. Stimulated IL-6 production by neutrophils at baseline, pre-treatment 

(n=19; n=18 for opsonised S. aureus) and review, post-treatment (n=19). Box and 

whisker plots showing median, interquartile range, maximum and minimum. Outliers 

(values >1.5xIQR) are shown as open circles (○) or, if above the y-axis maximum, solid 

circles (●). P-values calculated using Bonferroni corrected, 1-tailed Mann-Whitney test. 

Stimulated levels of IL-6 were significantly greater than those for RPMI control for all 

stimuli, at baseline and review, for both patient and control groups (P<0.0012; Bonferroni 

corrected, 1-tailed Wilcoxon test). 
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Figure 3. Stimulated TNFα production by neutrophils at baseline, pre-treatment 

(n=19; n=18 for opsonised S. aureus) and review, post-treatment (n=19). Box and 

whisker plots showing median, interquartile range, maximum and minimum. Outliers 

(values >1.5xIQR) are shown as open circles (○) or, if above the y-axis maximum, solid 

circles (●). P-values calculated using Bonferroni corrected, 1-tailed Mann-Whitney test. 

Stimulated levels of TNFα were significantly greater than those for RPMI control for all 

stimuli, at baseline and review, for both patient and control groups (P<0.0004; Bonferroni 

corrected, 1-tailed Wilcoxon test). 
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Figure 4. Stimulated IL-1β production by neutrophils at baseline, pre-treatment 

(n=19; n=18 for opsonised S. aureus) and review, post-treatment (n=19). Box and 

whisker plots showing median, interquartile range, maximum and minimum. Outliers 

(values >1.5xIQR) are shown as open circles (○) or, if above the y-axis maximum, solid 

circles (●). P-values calculated using Bonferroni corrected, 1-tailed Mann-Whitney test. 

Stimulated levels of IL-1β were significantly greater than those for RPMI control for all 

stimuli, at baseline and review, for both patient and control groups (P<0.0004; Bonferroni 

corrected, 1-tailed Wilcoxon test). 
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