774 research outputs found

    Discipline-specific reading expectation and challenges for ESL learners in US universities

    Get PDF
    English-medium institutions of higher education host increasing numbers of English-as-a second-language (ESL) learners in the US. English language skill is vital to their progress. Previous research examined reading challenges and expectations faculty have for their first-year students within five popular majors for international students including Biology, Business, Computer Science, Engineering, and Psychology. Analyses revealed differences across majors and identified the reading expectations and challenges these first-year learners face. Building on the research, this study examines the reading expectations of faculty for their upper-division students nearing graduation. In addition to comparing the reading expectations and challenges within the same five majors, we compared professor perceptions across the baccalaureate experience. We present these findings along with observations of participating faculty across the five majors regarding the linguistic preparation of their students for professional work or graduate study within the discipline. The implications and applications of these findings are discussed

    Factors associated with growth in daily smoking among Indigenous adolescents

    Get PDF
    North American Indigenous adolescents smoke earlier, smoke more, and are more likely to become regular smokers as adults than youth from any other ethnic group, yet we know very little about their early smoking trajectories. We use multilevel growth modeling across five waves of data from Indigenous adolescents (aged 10-13 years at Wave 1) to investigate factors associated with becoming a daily smoker. Several factors, including number of peers who smoked at Wave 1 and meeting diagnostic criteria for major depressive episode and conduct disorder, were associated with early daily smoking. Only age and increases in the number of smoking peers were associated with increased odds of becoming a daily smoker. © 2012 The Authors. Journal of Research on Adolescence © 2012 Society for Research on Adolescence

    Establishing the research priorities of paediatric emergency medicine clinicians in the UK and Ireland

    Get PDF
    Objective: Paediatric Emergency Research in the UK and Ireland (PERUKI) is a collaborative clinical studies group established in August 2012. It consists of a network of 43 centres from England, Ireland, Northern Ireland, Scotland and Wales, and aims to improve the emergency care of children through the performance of robust collaborative multicentre research within emergency departments. A study was conducted regarding the research priorities of PERUKI, to establish the research agenda for paediatric emergency medicine in the UK and Ireland. Methods: A two-stage modified Delphi survey was conducted of PERUKI members via an online survey platform. Stage 1 allowed each member to submit up to 12 individual questions that they identified as priorities for future research. In stage 2, the shortlisted questions were each rated on a seven-point Likert scale of relative importance. Participants: Members of PERUKI, including clinical specialists, academics, trainees and research nurses. Results: Stage 1 surveys were submitted by 46/91 PERUKI members (51%). A total of 249 research questions were generated and, following the removal of duplicate questions and shortlisting, 60 questions were carried forward for stage 2 ranking. Stage 2 survey responses were submitted by 58/95 members (61%). For the 60 research questions that were rated, the mean score of 'relative degree of importance' was 4.70 (range 3.36-5.62, SD 0.55). After ranking, the top 10 research priorities included questions on biomarkers for serious bacterial illness, major trauma, intravenous bronchodilators for asthma and decision rules for fever with petechiae, head injury and atraumatic limp. Conclusions: Research priorities of PERUKI members have been identified. By sharing these results with clinicians, academics and funding bodies, future research efforts can be focused to the areas of greatest need

    Role of viral hemagglutinin glycosylation in anti-influenza activities of recombinant surfactant protein D

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surfactant protein D (SP-D) plays an important role in innate defense against influenza A viruses (IAVs) and other pathogens.</p> <p>Methods</p> <p>We tested antiviral activities of recombinant human SP-D against a panel of IAV strains that vary in glycosylation sites on their hemagglutinin (HA). For these experiments a recombinant version of human SP-D of the Met11, Ala160 genotype was used after it was characterized biochemically and structurally.</p> <p>Results</p> <p>Oligosaccharides at amino acid 165 on the HA in the H3N2 subtype and 104 in the H1N1 subtype are absent in collectin-resistant strains developed <it>in vitro </it>and are important for mediating antiviral activity of SP-D; however, other glycans on the HA of these viral subtypes also are involved in inhibition by SP-D. H3N2 strains obtained shortly after introduction into the human population were largely resistant to SP-D, despite having the glycan at 165. H3N2 strains have become steadily more sensitive to SP-D over time in the human population, in association with addition of other glycans to the head region of the HA. In contrast, H1N1 strains were most sensitive in the 1970s–1980s and more recent strains have become less sensitive, despite retaining the glycan at 104. Two H5N1 strains were also resistant to inhibition by SP-D. By comparing sites of glycan attachment on sensitive vs. resistant strains, specific glycan sites on the head domain of the HA are implicated as important for inhibition by SP-D. Molecular modeling of the glycan attachment sites on HA and the carbohydrate recognition domain of SPD are consistent with these observations.</p> <p>Conclusion</p> <p>Inhibition by SP-D correlates with presence of several glycan attachment sites on the HA. Pandemic and avian strains appear to lack susceptibility to SP-D and this could be a contributory factor to their virulence.</p

    The ability of pandemic influenza virus hemagglutinins to induce lower respiratory pathology is associated with decreased surfactant protein D binding

    Get PDF
    AbstractPandemic influenza viral infections have been associated with viral pneumonia. Chimeric influenza viruses with the hemagglutinin segment of the 1918, 1957, 1968, or 2009 pandemic influenza viruses in the context of a seasonal H1N1 influenza genome were constructed to analyze the role of hemagglutinin (HA) in pathogenesis and cell tropism in a mouse model. We also explored whether there was an association between the ability of lung surfactant protein D (SP-D) to bind to the HA and the ability of the corresponding chimeric virus to infect bronchiolar and alveolar epithelial cells of the lower respiratory tract. Viruses expressing the hemagglutinin of pandemic viruses were associated with significant pathology in the lower respiratory tract, including acute inflammation, and showed low binding activity for SP-D. In contrast, the virus expressing the HA of a seasonal influenza strain induced only mild disease with little lung pathology in infected mice and exhibited strong in vitro binding to SP-D

    Collaboration between Science and Religious Education teachers in Scottish Secondary schools

    Get PDF
    The article reports on quantitative research that examines: (1) the current practice in collaboration; and (2) potential for collaboration between Science and Religious Education teachers in a large sample of Scottish secondary schools. The authors adopt and adapt three models (conflict; concordat and consonance) to interrogate the relationship between science and religion (and the perceived relation between these two subjects in schools) (Astley and Francis 2010). The findings indicate that there is evidence of limited collaboration and, in a few cases, a dismissive attitude towards collaboration (conflict and concordat and very weak consonance). There is, however, evidence of a genuine aspiration for greater collaboration among many teachers (moving towards a more robust consonance model). The article concludes by discussing a number of key factors that must be realised for this greater collaboration to be enacted

    Assessment of the Antiviral Properties of Recombinant Porcine SP-D against Various Influenza A Viruses In Vitro

    Get PDF
    The emergence of influenza viruses resistant to existing classes of antiviral drugs raises concern and there is a need for novel antiviral agents that could be used therapeutically or prophylacticaly. Surfactant protein D (SP-D) belongs to the family of C-type lectins which are important effector molecules of the innate immune system with activity against bacteria and viruses, including influenza viruses. In the present study we evaluated the potential of recombinant porcine SP-D as an antiviral agent against influenza A viruses (IAVs) in vitro. To determine the range of antiviral activity, thirty IAVs of the subtypes H1N1, H3N2 and H5N1 that originated from birds, pigs and humans were selected and tested for their sensitivity to recombinant SP-D. Using these viruses it was shown by hemagglutination inhibition assay, that recombinant porcine SP-D was more potent than recombinant human SP-D and that especially higher order oligomeric forms of SP-D had the strongest antiviral activity. Porcine SP-D was active against a broad range of IAV strains and neutralized a variety of H1N1 and H3N2 IAVs, including 2009 pandemic H1N1 viruses. Using tissue sections of ferret and human trachea, we demonstrated that recombinant porcine SP-D prevented attachment of human seasonal H1N1 and H3N2 virus to receptors on epithelial cells of the upper respiratory tract. It was concluded that recombinant porcine SP-D holds promise as a novel antiviral agent against influenza and further development and evaluation in vivo seems warranted

    Surfactant protein D modulates HIV infection of both T-cells and dendritic cells

    Get PDF
    Surfactant Protein D (SP-D) is an oligomerized C-type lectin molecule with immunomodulatory properties and involvement in lung surfactant homeostasis in the respiratory tract. SP-D binds to the enveloped viruses, influenza A virus and respiratory syncytial virus and inhibits their replication in vitro and in vivo. SP-D has been shown to bind to HIV via the HIV envelope protein gp120 and inhibit infectivity in vitro. Here we show that SP-D binds to different strains of HIV (BaL and IIIB) and the binding occurs at both pH 7.4 and 5.0 resembling physiological relevant pH values found in the body and the female urogenital tract, respectively. The binding of SP-D to HIV particles and gp120 was inhibited by the presence of several hexoses with mannose found to be the strongest inhibitor. Competition studies showed that soluble CD4 and CVN did not interfere with the interaction between SP-D and gp120. However, soluble recombinant DC-SIGN was shown to inhibit the binding between SP-D and gp120. SP-D agglutinated HIV and gp120 in a calcium dependent manner. SP-D inhibited the infectivity of HIV strains at both pH values of 7.4 and 5.0 in a concentration dependent manner. The inhibition of the infectivity was abolished by the presence of mannose. SP-D enhanced the binding of HIV to immature monocyte derived dendritic cells (iMDDCs) and was also found to enhance HIV capture and transfer to the T-cell like line PM1. These results suggest that SP-D can bind to and inhibit direct infection of T-cells by HIV but also enhance the transfer of infectious HIV particles from DCs to T-cells in vivo

    Human annexin A6 interacts with influenza a virus protein M2 and negatively modulates infection

    Get PDF
    Copyright © 2012, American Society for Microbiology. All Rights ReservedThe influenza A virus M2 ion channel protein has the longest cytoplasmic tail (CT) among the three viral envelope proteins and is well conserved between different viral strains. It is accessible to the host cellular machinery after fusion with the endosomal membrane and during the trafficking, assembly, and budding processes. We hypothesized that identification of host cellular interactants of M2 CT could help us to better understand the molecular mechanisms regulating the M2-dependent stages of the virus life cycle. Using yeast two-hybrid screening with M2 CT as bait, a novel interaction with the human annexin A6 (AnxA6) protein was identified, and their physical interaction was confirmed by coimmunoprecipitation assay and a colocalization study of virus-infected human cells. We found that small interfering RNA (siRNA)-mediated knockdown of AnxA6 expression significantly increased virus production, while its overexpression could reduce the titer of virus progeny, suggesting a negative regulatory role for AnxA6 during influenza A virus infection. Further characterization revealed that AnxA6 depletion or overexpression had no effect on the early stages of the virus life cycle or on viral RNA replication but impaired the release of progeny virus, as suggested by delayed or defective budding events observed at the plasma membrane of virus-infected cells by transmission electron microscopy. Collectively, this work identifies AnxA6 as a novel cellular regulator that targets and impairs the virus budding and release stages of the influenza A virus life cycle.This work was supported by the Research Fund for the Control of Infectious Disease (project 09080892) of the Hong Kong Government, the Area of Excellence Scheme of the University Grants Committee (grant AoE/M-12/-06 of the Hong Kong Special Administrative Region, China), the French Ministry of Health, the RESPARI Pasteur Network

    Human surfactant protein D alters oxidative stress and HMGA1 expression to induce p53 apoptotic pathway in eosinophil leukemic cell line

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright: © 2013 Mahajan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Surfactant protein D (SP-D), an innate immune molecule, has an indispensable role in host defense and regulation of inflammation. Immune related functions regulated by SP-D include agglutination of pathogens, phagocytosis, oxidative burst, antigen presentation, T lymphocyte proliferation, cytokine secretion, induction of apoptosis and clearance of apoptotic cells. The present study unravels a novel ability of SP-D to reduce the viability of leukemic cells (eosinophilic leukemic cell line, AML14.3D10; acute myeloid leukemia cell line, THP-1; acute lymphoid leukemia cell lines, Jurkat, Raji; and human breast epithelial cell line, MCF-7), and explains the underlying mechanisms. SP-D and a recombinant fragment of human SP-D (rhSP-D) induced G2/M phase cell cycle arrest, and dose and timedependent apoptosis in the AML14.3D10 eosinophilic leukemia cell line. Levels of various apoptotic markers viz. activated p53, cleaved caspase-9 and PARP, along with G2/M checkpoints (p21 and Tyr15 phosphorylation of cdc2) showed significant increase in these cells. We further attempted to elucidate the underlying mechanisms of rhSP-D induced apoptosis using proteomic analysis. This approach identified large scale molecular changes initiated by SPD in a human cell for the first time. Among others, the proteomics analysis highlighted a decreased expression of survival related proteins such as HMGA1, overexpression of proteins to protect the cells from oxidative burst, while a drastic decrease in mitochondrial antioxidant defense system. rhSP-D mediated enhanced oxidative burst in AML14.3D10 cells was confirmed, while antioxidant, N-acetyl-L-cysteine, abrogated the rhSP-D induced apoptosis. The rhSP-D mediated reduced viability was specific to the cancer cell lines and viability of human PBMCs from healthy controls was not affected. The study suggests involvement of SP-D in host’s immunosurveillance and therapeutic potential of rhSP-D in the eosinophilic leukemia and cancers of other origins.Department of Biotechnology, Indi
    corecore