188 research outputs found

    Allosteric activation shifts the rate-limiting step in a short-form ATP phosphoribosyltransferase

    Get PDF
    This work was supported by a Wellcome Trust Institutional Strategic Support Fund to the University of St Andrews, and the Biotechnology and Biological Sciences Research Council (BBSRC) [grant number BB/M010996/1] via an EASTBIO Doctoral Training Partnership studentship to GF. RS was the recipient of an Erasmus Undergraduate Fellowship.Short-form ATP phosphoribosyltransferase (ATPPRT) is a hetero-octameric allosteric enzyme comprising four catalytic subunits (HisGS) and four regulatory subunits (HisZ). ATPPRT catalyzes the Mg2+-dependent condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate (PRPP) to generate N1-(5-phospho-β-d-ribosyl)-ATP (PRATP) and pyrophosphate, the first reaction of histidine biosynthesis. While HisGS is catalytically active on its own, its activity is allosterically enhanced by HisZ in the absence of histidine. In the presence of histidine, HisZ mediates allosteric inhibition of ATPPRT. Here, initial velocity patterns, isothermal titration calorimetry, and differential scanning fluorimetry establish a distinct kinetic mechanism for ATPPRT where PRPP is the first substrate to bind. AMP is an inhibitor of HisGS, but steady-state kinetics and 31P NMR spectroscopy demonstrate that ADP is an alternative substrate. Replacement of Mg2+ by Mn2+ enhances catalysis by HisGS but not by the holoenzyme, suggesting different rate-limiting steps for nonactivated and activated enzyme forms. Density functional theory calculations posit an SN2-like transition state stabilized by two equivalents of the metal ion. Natural bond orbital charge analysis points to Mn2+ increasing HisGS reaction rate via more efficient charge stabilization at the transition state. High solvent viscosity increases HisGS’s catalytic rate, but decreases the hetero-octamer’s, indicating that chemistry and product release are rate-limiting for HisGS and ATPPRT, respectively. This is confirmed by pre-steady-state kinetics, with a burst in product formation observed with the hetero-octamer but not with HisGS. These results are consistent with an activation mechanism whereby HisZ binding leads to a more active conformation of HisGS, accelerating chemistry beyond the product release rate.Publisher PDFPeer reviewe

    Staged cardiovascular magnetic resonance for differential diagnosis of Troponin T positive patients with low likelihood for acute coronary syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac Troponin-T (cTnT) is a cardio-specific indicator of myocardial necrosis due to ischemic or non-ischemic events. Considering the multiple causes of myocardial injury and treatment consequences there is great clinical need to clarify the underlying reason for cTnT release. We sought to implement acute CMR as a non-invasive imaging method for differential diagnosis of elevated cTnT in chest-pain unit (CPU) patients with non-conclusive symptoms and ECG-changes and a low to intermediate probability for coronary artery disease (CAD).</p> <p>Results</p> <p>CPU patients (n = 29) who had positive cTnT were scanned at 1.5T with a new step-by-step CMR algorithm including cine-, perfusion-, T2-, angiography-and late gadolinium enhancement (LGE) imaging. For comparison patients also underwent echocardiography and coronary angiography if necessary. CMR was conducted successfully in all patients and detected 93% of cTnT releases of unknown cause, without adverse hemodynamic or arrhythmic events. Acute myocardial infarction was detected in 11, pulmonary embolism in 6, myocarditis in 5, renal disease and cardiomyopathy in 2, storage disorder in 1 patient. In 2 patients CMR was unable to reveal the cause of cTnT elevations. Mean CMR scan-time was 35 ± 8 min. In 4 patients, CMR led to immediate coronary angiography with correct prediction of the infarct related artery.</p> <p>Conclusions</p> <p>We implemented a novel CMR algorithm to show the clinical value and practical feasibility of acute CMR in a non-conclusive patient cohort with unclear cTnT elevation. Since this pilot study has shown the feasibility of CMR in CPU patients, further prospective studies are warranted to compare CMR with other imaging modalities.</p

    A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations

    Full text link
    An essential component in proton radiotherapy is the algorithm to calculate the radiation dose to be delivered to the patient. The most common dose algorithms are fast but they are approximate analytical approaches. However their level of accuracy is not always satisfactory, especially for heterogeneous anatomic areas, like the thorax. Monte Carlo techniques provide superior accuracy, however, they often require large computation resources, which render them impractical for routine clinical use. Track-repeating algorithms, for example the Fast Dose Calculator, have shown promise for achieving the accuracy of Monte Carlo simulations for proton radiotherapy dose calculations in a fraction of the computation time. We report on the implementation of the Fast Dose Calculator for proton radiotherapy on a card equipped with graphics processor units (GPU) rather than a central processing unit architecture. This implementation reproduces the full Monte Carlo and CPU-based track-repeating dose calculations within 2%, while achieving a statistical uncertainty of 2% in less than one minute utilizing one single GPU card, which should allow real-time accurate dose calculations

    Religious affiliation modulates weekly cycles of cropland burning in Sub-Saharan Africa

    Get PDF
    Research ArticleVegetation burning is a common land management practice in Africa, where fire is used for hunting, livestock husbandry, pest control, food gathering, cropland fertilization, and wildfire prevention. Given such strong anthropogenic control of fire, we tested the hypotheses that fire activity displays weekly cycles, and that the week day with the fewest fires depends on regionally predominant religious affiliation.We also analyzed the effect of land use (anthrome) on weekly fire cycle significance. Fire density (fire counts.km-2) observed per week day in each region was modeled using a negative binomial regression model, with fire counts as response variable, region area as offset and a structured random effect to account for spatial dependence. Anthrome (settled, cropland, natural, rangeland), religion (Christian, Muslim, mixed) week day, and their 2-way and 3-way interactions were used as independent variables. Models were also built separately for each anthrome, relating regional fire density with week day and religious affiliation. Analysis revealed a significant interaction between religion and week day, i.e. regions with different religious affiliation (Christian, Muslim) display distinct weekly cycles of burning. However, the religion vs. week day interaction only is significant for croplands, i.e. fire activity in African croplands is significantly lower on Sunday in Christian regions and on Friday in Muslim regions. Magnitude of fire activity does not differ significantly among week days in rangelands and in natural areas, where fire use is under less strict control than in croplands. These findings can contribute towards improved specification of ignition patterns in regional/global vegetation fire models, and may lead to more accurate meteorological and chemical weather forecastinginfo:eu-repo/semantics/publishedVersio

    3D MRI-based tumor delineation of ocular melanoma and its comparison with conventional techniques

    Full text link
    The aim of this study is to (1) compare the delineation of the tumor volume for ocular melanoma on high-resolution three-dimensional (3D) T2-weighted fast spin echo magnetic resonance imaging (MRI) images with conventional techniques of A- and B-scan ultrasound, transcleral illumination, and placement of tantalum markers around tumor base and (2) to evaluate whether the surgically placed marker ring tumor delineation can be replaced by 3D MRI based tumor delineation. High-resolution 3D T2-weighted fast spin echo (3D FSE) MRI scans were obtained for 60 consecutive ocular melanoma patients using a 1.5 T MRI (GE Medical Systems, Milwaukee, WI), in a standard head coil. These patients were subsequently treated with proton beam therapy at the UC Davis Cyclotron, Davis, CA. The tumor was delineated by placement of tantalum rings (radio-opaque markers) around the tumor periphery as defined by pupillary transillumination during surgery. A point light source, placed against the sclera, was also used to confirm ring agreement with indirect ophthalmoscopy. When necessary, intraoperative ultrasound was also performed. The patients were planned using EYEPLAN software and the tumor volumes were obtained. For analysis, the tumors were divided into four categories based on tumor height and basal diameter. In order to assess the impact of high-resolution 3D T2 FSE MRI, the tumor volumes were outlined on the MRI scans by two independent observers and the tumor volumes calculated for each patient. Six (10%) of 60 patients had tumors, which were not visible on 3D MRI images. These six patients had tumors with tumor heights &lt;= 3 mm. A small intraobserver variation with a mean of (-0.22 +/- 4)% was seen in tumor volumes delineated by 3D T2 FSE MR images. The ratio of tumor volumes measured on MRI to EYEPLAN for the largest to the smallest tumor volumes varied between 0.993 and 1.02 for 54 patients. The tumor volumes measured directly on 3D T2 FSE MRI ranged from 4.03 to 0.075 cm(3). with a mean of 0.87 +/- 0.84 cm3. The tumor shapes obtained from 3D T2 FSE MR images were comparable to the tumor shapes obtained using EYEPLAN software. The demonstration of intraocular tumor volumes with the high-resolution 3D fast spin echo T2 weighted MRI is excellent and provides additional information on tumor shape. We found a high degree of accuracy for tumor volumes with direct MRI volumetric measurements in uveal melanoma patients. In some patients with extra large tumors, the tumor base and shape was modified, because of the additional information obtained from 3D T2 FSE MR images. (c) 2005 American Association of Physicists in Medicine
    corecore