159 research outputs found

    Effects of experience and body size on refuge choice in the crayfish Orconectes immunis

    Get PDF
    We investigated whether refuge size or experience with a refuge affected the refuge use of male Orconectes immunis crayfish. Individuals were given choices among seven refuges for 10 consecutive days. Refuges were formed from equal length but different diameter PVC pipe and placed in an array in a random sequence. Three treatments were used. In the Novel Refuge treatment, individuals were placed in a new test arena with a new arrangement of cleaned refuges every day. In the Nonremoval treatment, individuals were left in the same arena with the same set of refuges each day. In the Removal treatment, individuals were removed from the refuges each day but placed back in the same arena with the same set of refuges after the refuges had been cleaned. We found that refuge occupation was correlated with an individual\u27s size; smaller crayfish tended to use smaller refuges than larger crayfish, even though all crayfish could fit in all of the different sized refuges. When first tested, individuals initially chose larger refuges than they would subsequently settle in, suggesting that under duress, they were not as particular about refuge characteristics. Individuals in the Nonremoval and Removal treatments were significantly more consistent in their refuge use than those in the Novel Refuge treatment, suggesting that experience with a particular refuge increased use of that refuge. Individuals from the Novel Refuge treatment that were housed for a month with a single refuge did not increase their use of that sized refuge more than those that were housed without a refuge, indicating that simply occupying a refuge of a given size did not affect refuge preference

    Functional Interaction between Type III-Secreted Protein IncA of Chlamydophila psittaci and Human G3BP1

    Get PDF
    Chlamydophila (Cp.) psittaci, the causative agent of psittacosis in birds and humans, is the most important zoonotic pathogen of the family Chlamydiaceae. These obligate intracellular bacteria are distinguished by a unique biphasic developmental cycle, which includes proliferation in a membrane-bound compartment termed inclusion. All Chlamydiaceae spp. possess a coding capacity for core components of a Type III secretion apparatus, which mediates specific delivery of anti-host effector proteins either into the chlamydial inclusion membrane or into the cytoplasm of target eukaryotic cells. Here we describe the interaction between Type III-secreted protein IncA of Cp. psittaci and host protein G3BP1 in a yeast two-hybrid system. In GST-pull down and co-immunoprecipitation experiments both in vitro and in vivo interaction between full-length IncA and G3BP1 were shown. Using fluorescence microscopy, the localization of G3BP1 near the inclusion membrane of Cp. psittaci-infected Hep-2 cells was demonstrated. Notably, infection of Hep-2 cells with Cp. psittaci and overexpression of IncA in HEK293 cells led to a decrease in c-Myc protein concentration. This effect could be ascribed to the interaction between IncA and G3BP1 since overexpression of an IncA mutant construct disabled to interact with G3BP1 failed to reduce c-Myc concentration. We hypothesize that lowering the host cell c-Myc protein concentration may be part of a strategy employed by Cp. psittaci to avoid apoptosis and scale down host cell proliferation

    Analysis of Gene expression in soybean (Glycine max) roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Root-knot nematodes are sedentary endoparasites that can infect more than 3000 plant species. Root-knot nematodes cause an estimated $100 billion annual loss worldwide. For successful establishment of the root-knot nematode in its host plant, it causes dramatic morphological and physiological changes in plant cells. The expression of some plant genes is altered by the nematode as it establishes its feeding site.</p> <p>Results</p> <p>We examined the expression of soybean (<it>Glycine max</it>) genes in galls formed in roots by the root-knot nematode, <it>Meloidogyne incognita</it>, 12 days and 10 weeks after infection to understand the effects of infection of roots by <it>M. incognita</it>. Gene expression was monitored using the Affymetrix Soybean GeneChip containing 37,500 <it>G. max </it>probe sets. Gene expression patterns were integrated with biochemical pathways from the Kyoto Encyclopedia of Genes and Genomes using PAICE software. Genes encoding enzymes involved in carbohydrate and cell wall metabolism, cell cycle control and plant defense were altered.</p> <p>Conclusions</p> <p>A number of different soybean genes were identified that were differentially expressed which provided insights into the interaction between <it>M. incognita </it>and soybean and into the formation and maintenance of giant cells. Some of these genes may be candidates for broadening plants resistance to root-knot nematode through over-expression or silencing and require further examination.</p

    An Open, Large-Scale, Collaborative Effort to Estimate the Reproducibility of Psychological Science

    Get PDF
    Reproducibility is a defining feature of science. However, because of strong incentives for innovation and weak incentives for confirmation, direct replication is rarely practiced or published. The Reproducibility Project is an open, large-scale, collaborative effort to systematically examine the rate and predictors of reproducibility in psychological science. So far, 72 volunteer researchers from 41 institutions have organized to openly and transparently replicate studies published in three prominent psychological journals in 2008. Multiple methods will be used to evaluate the findings, calculate an empirical rate of replication, and investigate factors that predict reproducibility. Whatever the result, a better understanding of reproducibility will ultimately improve confidence in scientific methodology and findings

    The Transcriptome of Compatible and Incompatible Interactions of Potato (Solanum tuberosum) with Phytophthora infestans Revealed by DeepSAGE Analysis

    Get PDF
    Late blight, caused by the oomycete Phytophthora infestans, is the most important disease of potato (Solanum tuberosum). Understanding the molecular basis of resistance and susceptibility to late blight is therefore highly relevant for developing resistant cultivars, either by marker-assissted selection or by transgenic approaches. Specific P. infestans races having the Avr1 effector gene trigger a hypersensitive resistance response in potato plants carrying the R1 resistance gene (incompatible interaction) and cause disease in plants lacking R1 (compatible interaction). The transcriptomes of the compatible and incompatible interaction were captured by DeepSAGE analysis of 44 biological samples comprising five genotypes, differing only by the presence or absence of the R1 transgene, three infection time points and three biological replicates. 30.859 unique 21 base pair sequence tags were obtained, one third of which did not match any known potato transcript sequence. Two third of the tags were expressed at low frequency (<10 tag counts/million). 20.470 unitags matched to approximately twelve thousand potato transcribed genes. Tag frequencies were compared between compatible and incompatible interactions over the infection time course and between compatible and incompatible genotypes. Transcriptional changes were more numerous in compatible than in incompatible interactions. In contrast to incompatible interactions, transcriptional changes in the compatible interaction were observed predominantly for multigene families encoding defense response genes and genes functional in photosynthesis and CO2 fixation. Numerous transcriptional differences were also observed between near isogenic genotypes prior to infection with P. infestans. Our DeepSAGE transcriptome analysis uncovered novel candidate genes for plant host pathogen interactions, examples of which are discussed with respect to possible function

    A Bovine Model of Respiratory Chlamydia psittaci Infection: Challenge Dose Titration

    Get PDF
    This study aimed to establish and evaluate a bovine respiratory model of experimentally induced acute C. psittaci infection. Calves are natural hosts and pathogenesis may resemble the situation in humans. Intrabronchial inoculation of C. psittaci strain DC15 was performed in calves aged 2–3 months via bronchoscope at four different challenge doses from 106 to 109 inclusion-forming units (ifu) per animal. Control groups received either UV-inactivated C. psittaci or cell culture medium. While 106 ifu/calf resulted in a mild respiratory infection only, the doses of 107 and 108 induced fever, tachypnea, dry cough, and tachycardia that became apparent 2–3 days post inoculation (dpi) and lasted for about one week. In calves exposed to 109 ifu C. psittaci, the respiratory disease was accompanied by severe systemic illness (apathy, tremor, markedly reduced appetite). At the time point of most pronounced clinical signs (3 dpi) the extent of lung lesions was below 10% of pulmonary tissue in calves inoculated with 106 and 107 ifu, about 15% in calves inoculated with 108 and more than 30% in calves inoculated with 109 ifu C. psittaci. Beside clinical signs and pathologic lesions, the bacterial load of lung tissue and markers of pulmonary inflammation (i.e., cell counts, concentration of proteins and eicosanoids in broncho-alveolar lavage fluid) were positively associated with ifu of viable C. psittaci. While any effect of endotoxin has been ruled out, all effects could be attributed to infection by the replicating bacteria. In conclusion, the calf represents a suitable model of respiratory chlamydial infection. Dose titration revealed that both clinically latent and clinically manifest infection can be reproduced experimentally by either 106 or 108 ifu/calf of C. psittaci DC15 while doses above 108 ifu C. psittaci cannot be recommended for further studies for ethical reasons. This defined model of different clinical expressions of chlamydial infection allows studying host-pathogen interactions

    Control of Bone Mass and Remodeling by PTH Receptor Signaling in Osteocytes

    Get PDF
    Osteocytes, former osteoblasts buried within bone, are thought to orchestrate skeletal adaptation to mechanical stimuli. However, it remains unknown whether hormones control skeletal homeostasis through actions on osteocytes. Parathyroid hormone (PTH) stimulates bone remodeling and may cause bone loss or bone gain depending on the balance between bone resorption and formation. Herein, we demonstrate that transgenic mice expressing a constitutively active PTH receptor exclusively in osteocytes exhibit increased bone mass and bone remodeling, as well as reduced expression of the osteocyte-derived Wnt antagonist sclerostin, increased Wnt signaling, increased osteoclast and osteoblast number, and decreased osteoblast apoptosis. Deletion of the Wnt co-receptor LDL related receptor 5 (LRP5) attenuates the high bone mass phenotype but not the increase in bone remodeling induced by the transgene. These findings demonstrate that PTH receptor signaling in osteocytes increases bone mass and the rate of bone remodeling through LRP5-dependent and -independent mechanisms, respectively

    Grandparental immune priming in the pipefish Syngnathus typhle

    Get PDF
    Background: Phenotypic changes in response to environmental influences can persist from one generation into the next. In many systems parental parasite experience influences offspring immune responses, known as transgenerational immune priming (TGIP). TGIP in vertebrates is mainly maternal and short-term, supporting the adaptive immune system of the offspring during its maturation. However, if fathers and offspring have a close physical connection, evolution of additional paternal immune priming can be adaptive. Biparental TGIP may result in maximized immunological protection. Here, we investigate multigenerational biparental TGIP in the sex-role reversed pipefish Syngnathus typhle by exposing grandparents to an immune challenge with heat-killed bacteria and assessing gene expression (44 target genes) of the F2-generation. Results: Grandparental immune challenge induced gene expression of immune genes in one-week-old grandoffspring. Similarly, genes mediating epigenetic regulation including DNA-methylation and histone modifications were involved in grandparental immune priming. While grand-maternal impact was strong on genes of the complement component system, grand-paternal exposure changed expression patterns of genes mediating innate immune defense. Conclusion: In a system with male pregnancy, grandparents influenced the immune system of their grandoffspring in a sex-specific manner, demonstrating multigenerational biparental TGIP. The involvement of epigenetic effects suggests that TGIP via the paternal line may not be limited to the pipefish system that displays male pregnancy. While the benefits and costs of grandparental TGIP depend on the temporal heterogeneity of environmental conditions, multigenerational TGIP may affect host-parasite coevolution by dampening the amplitude of Red Queen Dynamics
    corecore