840 research outputs found

    Effects of surface chemistry on hot corrosion life

    Get PDF
    Hot corrosion life prediction methodology based on a combination of laboratory test data and field service turbine components, which show evidence of hot corrosion, were examined. Components were evaluated by optical metallography, scanning electron microscopy (SEM), and electron micropulse (EMP) examination

    Studies on cultured Schwann cells: the induction of myelin synthesis, and the control of their proliferation by a new growth factor

    Get PDF
    We have recently described the use of immunological methods to identify and purify rat Schwann cells. In dissociated cultures of neonatal sciatic nerve, all of the cells can be identified by antigenic criteria as either Schwann cells or fibroblasts. The fibroblasts may be removed by treatment with antiserum to the Thy-1 antigen and complement. The purified Schwann cells have been used to study the regulation of the expression of myelin components, and the stimulation of Schwann cell division by a soluble growth factor. Among the components of myelin, we have concentrated on the peripheral myelin glycoprotein P_0, which constitutes 50–60% of the protein in peripheral myelin. We have studied the distribution of P_0 in vitro and in vivo by immunofluorescence, immuno-autoradiography on SDS gels, and solid-phase radioimmunoassay. Our results support the hypothesis that P_0 is induced specifically as a consequence of the interaction between the Schwann cell and the myelinated type of axon. The level of P_0 in the myelin membrane is at least 1000-fold higher than in the Schwann cell membrane. Purified Schwann cells divide very slowly in a conventional tissue culture medium. This has allowed us to purify a new growth factor from extracts of brain and pituitary, tentatively named Glial Growth Factor (GGF). The activity resides in a basic protein with a native molecular weight of 6 × 10^4 daltons and a subunit molecular weight of 3 × 10^4 daltons, which is active at levels comparable to those of epidermal growth factor. GGF is mitogenic for Schwann cells, astrocytes and muscle fibroblasts

    Surface detonation in type Ia supernova explosions?

    Get PDF
    We explore the evolution of thermonuclear supernova explosions when the progenitor white dwarf star ignites asymmetrically off-center. Several numerical simulations are carried out in two and three dimensions to test the consequences of different initial flame configurations such as spherical bubbles displaced from the center, more complex deformed configurations, and teardrop-shaped ignitions. The burning bubbles float towards the surface while releasing energy due to the nuclear reactions. If the energy release is too small to gravitationally unbind the star, the ash sweeps around it, once the burning bubble approaches the surface. Collisions in the fuel on the opposite side increase its temperature and density and may -- in some cases -- initiate a detonation wave which will then propagate inward burning the core of the star and leading to a strong explosion. However, for initial setups in two dimensions that seem realistic from pre-ignition evolution, as well as for all three-dimensional simulations the collimation of the surface material is found to be too weak to trigger a detonation.Comment: 5 pages, 3 figures, in: Proceedings of the SciDAC 2006 Meeting, Denver June 25-26 2006, also available at http://herald.iop.org/jpcs46/m51/gbr//link/40

    Simulations of Astrophysical Fluid Instabilities

    Get PDF
    We present direct numerical simulations of mixing at Rayleigh-Taylor unstable interfaces performed with the FLASH code, developed at the ASCI/Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago. We present initial results of single-mode studies in two and three dimensions. Our results indicate that three-dimensional instabilities grow significantly faster than two-dimensional instabilities and that grid resolution can have a significant effect on instability growth rates. We also find that unphysical diffusive mixing occurs at the fluid interface, particularly in poorly resolved simulations.Comment: 3 pages, 1 figure. To appear in the proceedings of the 20th Texas Symposium on Relativistic Astrophysic

    Jet trails and Mach cones: The interaction of microquasars with the ISM

    Full text link
    A sub-set of microquasars exhibit high peculiar velocity with respect to the local standard of rest due to the kicks they receive when being born in supernovae. The interaction between the radio plasma released by microquasar jets from such high-velocity binaries with the ISM must lead to the production of trails and bow shocks similar to what is observed in narrow-angle tailed radio galaxies and pulsar wind nebulae. We present a set of numerical simulations of this interaction that illuminate the long term dynamical evolution and the observational properties of these microquasar bow shock nebulae and trails. We find that this interaction always produces a structure that consists of a bow shock, a trailing neck, and an expanding bubble. Using our simulations to model emission, we predict that the shock surrounding the bubble and the neck should be visible in H{\alpha} emission, the interior of the bubble should be visible in synchrotron radio emission, and only the bow shock is likely to be detectable in X-ray emission. We construct an analytic model for the evolution of the neck and bubble shape and compare this model with observations of X-ray binary SAX J1712.6-3739.Comment: 33 pages, 13 figures, 1 table; Accepted to Ap

    Extensible Component Based Architecture for FLASH, A Massively Parallel, Multiphysics Simulation Code

    Full text link
    FLASH is a publicly available high performance application code which has evolved into a modular, extensible software system from a collection of unconnected legacy codes. FLASH has been successful because its capabilities have been driven by the needs of scientific applications, without compromising maintainability, performance, and usability. In its newest incarnation, FLASH3 consists of inter-operable modules that can be combined to generate different applications. The FLASH architecture allows arbitrarily many alternative implementations of its components to co-exist and interchange with each other, resulting in greater flexibility. Further, a simple and elegant mechanism exists for customization of code functionality without the need to modify the core implementation of the source. A built-in unit test framework providing verifiability, combined with a rigorous software maintenance process, allow the code to operate simultaneously in the dual mode of production and development. In this paper we describe the FLASH3 architecture, with emphasis on solutions to the more challenging conflicts arising from solver complexity, portable performance requirements, and legacy codes. We also include results from user surveys conducted in 2005 and 2007, which highlight the success of the code.Comment: 33 pages, 7 figures; revised paper submitted to Parallel Computin

    Genetic diversity within and genetic differentiation between blooms of a microalgal species

    Get PDF
    The field of genetic diversity in protists, particularly phytoplankton, is under expansion. However, little is known regarding variation in genetic diversity within populations over time. The aim of our study was to investigate intrapopulation genetic diversity and genetic differentiation in the freshwater bloom-forming microalga Gonyostomum semen (Raphidophyceae). The study covered a 2-year period including all phases of the bloom. Amplified fragment length polymorphism (AFLP) was used to determine the genetic structure and diversity of the population. Our results showed a significant differentiation between samples collected during the two blooms from consecutive years. Also, an increase of gene diversity and a loss of differentiation among sampling dates were observed over time within a single bloom. The latter observations may reflect the continuous germination of cysts from the sediment. The life cycle characteristics of G. semen, particularly reproduction and recruitment, most likely explain a high proportion of the observed variation. This study highlights the importance of the life cycle for the intraspecific genetic diversity of microbial species, which alternates between sexual and asexual reproduction.Postprin
    corecore