344 research outputs found
Seasonal and interannual variability of physical and biological dynamics at the shelfbreak front of the Middle Atlantic Bight: nutrient supply mechanisms
A high-resolution, 3-dimensional coupled biophysical model is used to simulate ocean circulation and ecosystem variations at the shelfbreak front of the Middle Atlantic Bight (MAB). Favorable comparisons between satellite observations and model hindcast solutions from January 2004 to November 2007 indicate the model has intrinsic skills in resolving fundamental physical and biological dynamics at the MAB shelfbreak. Seasonal and interannual variability of ocean physical and biological states and their driving mechanisms are further analyzed. The domain-wide upper water column nutrient content is found to peak in late winter-early spring. Phytoplankton spring bloom starts 1–2 months later, followed by zooplankton bloom in early summer. Our analysis shows the variability of shelfbreak nutrient supply is controlled by local mixing that deepens the mixed layer and injects deep ocean nutrients into the upper water column and alongshore nutrient transport by the shelfbreak jet and associated currents. Nutrient vertical advection associated with the shelfbreak bottom boundary layer convergence is another significant contributor. Spring mean nutrient budget diagnostics along the Nantucket transect are compared between nutrient rich 2004 and nutrient poor 2007. Physical advection and diffusion play the major role in determining strong interannual variations in shelfbreak nutrient content. The biological (source minus sink) term is very similar between these two years
A coupled physical-biological model of the Northern Gulf of Mexico shelf: model description, validation and analysis of phytoplankton variability
The Texas-Louisiana shelf in the Northern Gulf of Mexico receives large inputs of nutrients and freshwater from the Mississippi/Atchafalaya River system. The nutrients stimulate high rates of primary production in the river plume, which contributes to the development of a large and recurring hypoxic area in summer, but the mechanistic links between hypoxia and river discharge of freshwater and nutrients are complex as the accumulation and vertical export of organic matter, the establishment and maintenance of vertical stratification, and the microbial degradation of organic matter are controlled by a non-linear interplay of factors. Unraveling these interactions will have to rely on a combination of observations and models. Here we present results from a realistic, 3-dimensional, physical-biological model with focus on a quantification of nutrient-stimulated phytoplankton growth, its variability and the fate of this organic matter. We demonstrate that the model realistically reproduces many features of observed nitrate and phytoplankton dynamics including observed property distributions and rates. We then contrast the environmental factors and phytoplankton source and sink terms characteristic of three model subregions that represent an ecological gradient from eutrophic to oligotrophic conditions. We analyze specifically the reasons behind the counterintuitive observation that primary production in the light-limited plume region near the Mississippi River delta is positively correlated with river nutrient input, and find that, while primary production and phytoplankton biomass are positively correlated with nutrient load, phytoplankton growth rate is not. This suggests that accumulation of biomass in this region is not primarily controlled bottom up by nutrient-stimulation, but top down by systematic differences in the loss processes
Modeling the Dynamics and Export of Dissolved Organic Matter in the Northeastern U.S. Continental Shelf
Continental shelves are believed to play a major role in carbon cycling due to their high productivity. Particulate organic carbon (POC) burial has been included in models as a carbon sink, but we show here that seasonally produced dissolved organic carbon (DOC) on the shelf can be exported to the open ocean by horizontal transport at similar rates (1-2 mol C/sq m/yr) in the southern U.S. Mid-Atlantic Bight (MAB). The dissolved organic matter (DOM) model imbedded in a coupled circulation-biogeochemical model reveals a double dynamics: the progressive release of dissolved organic nitrogen (DON) in the upper layer during summer increases the regenerated primary production by 30 to 300%, which, in turns ; enhances the DOC production mainly from phytoplankton exudation in the upper layer and solubilization of particulate organic matter (POM) deeper in the water column. This analysis suggests that DOM is a key element for better representing the ecosystem functioning and organic fluxes in models because DOM (1) is a major organic pool directly related to primary production, (2) decouples partially the carbon and nitrogen cycles (through carbon excess uptake, POM solubilization and DOM mineralization) and (3) is intimately linked to the residence time of water masses for its distribution and export
Laser-Cluster-Interaction in a Nanoplasma-Model with Inclusion of Lowered Ionization Energies
The interaction of intense laser fields with silver and argon clusters is
investigated theoretically using a modified nanoplasma model. Single pulse and
double pulse excitations are considered. The influence of the dense cluster
environment on the inner ionization processes is studied including the lowering
of the ionization energies. There are considerable changes in the dynamics of
the laser-cluster interaction. Especially, for silver clusters, the lowering of
the ionization energies leads to increased yields of highly charged ions.Comment: 10 pages, 11 figure
A review of climate change and the implementation of marine biodiversity legislation in the United Kingdom
1. Marine legislation, the key means by which the conservation of marine biodiversity is achieved, has been developing since the 1960s. In recent decades, an increasing focus on ‘holistic’ policy development is evident, compared with earlier ‘piecemeal’ sectoral approaches. Important marine legislative tools being used in the United Kingdom, and internationally, include the designation of marine protected areas and the Marine Strategy Framework Directive (MSFD) with its aim of meeting ‘Good Environmental Status’ (GES) for European seas by 2020. 2. There is growing evidence of climate change impacts on marine biodiversity, which may compromise the effectiveness of any legislation intended to promote sustainable marine resource management. 3. A review of key marine biodiversity legislation relevant to the UK shows climate change was not considered in the drafting of much early legislation. Despite the huge increase in knowledge of climate change impacts in recent decades, legislation is still limited in how it takes these impacts into account. There is scope, however, to account for climate change in implementing much of the legislation through (a) existing references to environmental variability; (b) review cycles; and (c) secondary legislation and complementary policy development. 4. For legislation relating to marine protected areas (e.g. the EC Habitats and Birds Directives), climate change has generally not been considered in the site-designation process, or for ongoing management, with the exception of the Marine (Scotland) Act. Given that changing environmental conditions (e.g. rising temperatures and ocean acidification) directly affect the habitats and species that sites are designated for, how this legislation is used to protect marine biodiversity in a changing climate requires further consideration. 5. Accounting for climate change impacts on marine biodiversity in the development and implementation of legislation is vital to enable timely, adaptive management responses. Marine modelling can play an important role in informing management decisions
Diagnosing transit times on the northwestern North Atlantic continental shelf
The circulation in the northwestern North Atlantic Ocean is
highly complex, characterized by the confluence of two major western boundary
current systems and several shelf currents. Here we present the first
comprehensive analysis of transport paths and timescales for the northwestern
North Atlantic shelf, which is useful for estimating ventilation rates,
describing circulation and mixing, characterizing the composition of water
masses with respect to different source regions, and elucidating rates and
patterns of biogeochemical processing, species dispersal, and genetic
connectivity. Our analysis uses dye and age tracers within a high-resolution
circulation model of the region, divided into nine subregions, to diagnose
retention times, transport pathways, and transit times. Retention times are
shortest on the Scotian Shelf ( ∼  3 months), where the inshore and
shelf-break branches of the coastal current system result in high along-shelf
transport to the southwest, and on the Grand Banks ( ∼  3 months). Larger
retention times are simulated in the Gulf of St. Lawrence ( ∼  12 months)
and the Gulf of Maine ( ∼  6 months). Source water analysis shows that
Scotian Shelf water is primarily comprised of waters from the Grand Banks and
Gulf of St. Lawrence, with varying composition across the shelf.
Contributions from the Gulf of St. Lawrence are larger at near-shore
locations, whereas locations near the shelf break have larger contributions
from the Grand Banks and slope waters. Waters from the deep slope have little
connectivity with the shelf, because the shelf-break current inhibits
transport across the shelf break. Grand Banks and Gulf of St. Lawrence waters
are therefore dominant controls on biogeochemical properties, and on setting
and sustaining planktonic communities on the Scotian Shelf.</p
Carrier - envelope phase-tagged imaging of the controlled electron acceleration from SiO2 nanospheres in intense few-cycle laser fields
Waveform-controlled light fields offer the possibility of manipulating
ultrafast electronic processes on sub-cycle timescales. The optical lightwave
control of the collective electron motion in nanostructured materials is key
to the design of electronic devices operating at up to petahertz frequencies.
We have studied the directional control of the electron emission from 95 nm
diameter SiO2 nanoparticles in few-cycle laser fields with a well-defined
waveform. Projections of the three-dimensional (3D) electron momentum
distributions were obtained via single-shot velocity-map imaging (VMI), where
phase tagging allowed retrieving the laser waveform for each laser shot. The
application of this technique allowed us to efficiently suppress background
contributions in the data and to obtain very accurate information on the
amplitude and phase of the waveform-dependent electron emission. The
experimental data that are obtained for 4 fs pulses centered at 720 nm at
different intensities in the range (1–4) × 1013 W cm−2 are compared to quasi-
classical mean-field Monte-Carlo simulations. The model calculations identify
electron backscattering from the nanoparticle surface in highly dynamical
localized fields as the main process responsible for the energetic electron
emission from the nanoparticles. The local field sensitivity of the electron
emission observed in our studies can serve as a foundation for future research
on propagation effects for larger particles and field-induced material changes
at higher intensities
Eastern US Continental Shelf Carbon Budget Integrating Models, Data Assimilation, and Analysis
- …
