26 research outputs found

    Serious fungal infections in Thailand

    Get PDF
    The burden of serious fungal infection in Thailand is increasing but data regarding its incidence and prevalence are lacking. In this study we aimed to estimate the burden of serious fungal diseases in Thailand based on the size of the populations at risk and available epidemiological databases. Data derived from The Bureau of Epidemiology, Department of Disease Control, Thai Ministry of Public Health, World Health Organisation, international and local reports, and some unreported data were used. When no data existed, risk populations were used to estimate frequencies of fungal infections, using previously described methodology by LIFE. Recurrent vulvovaginal candidiasis (>4 episodes per year) is estimated to occur in 3,310 per 100,000 population. Using a previously described rate that 14/10,000 admissions are with fungaemia and 94% of those are Candida, we estimated 8,650 patients with candidaemia. The prevalence of chronic pulmonary aspergillosis is relatively high with a total of 19,044, approximately half subsequent to pulmonary tuberculosis. Invasive aspergillosis is estimated to affect 941 patients following leukaemia therapy, transplantations, and chronic obstructive pulmonary disease, approximately 1.4/100,000. In addition, allergic bronchopulmonary aspergillosis and severe asthma with fungal sensitisation were estimated at approximately 58.4/100,000 and 77/100,000, respectively. Given approximately 8,134 new cases of AIDS annually, cryptococcal meningitis, Pneumocystis pneumonia, and Talaromyces marneffei infection are estimated at 1.9/100,000, 2.6/100,000, and 0.3/100,000, respectively. The present study indicates that about 1.93% (1,254,562) of the population is affected by serious fungal infections. Owing to the lack of data, reports, and statistics, the number of patients with mycoses in Thailand can only be estimated

    Mycobacterium tuberculosis causing tuberculous lymphadenitis in Maputo, Mozambique

    Get PDF
    BACKGROUND: The zoonosis bovine tuberculosis (TB) is known to be responsible for a considerable proportion of extrapulmonary TB. In Mozambique, bovine TB is a recognised problem in cattle, but little has been done to evaluate how Mycobacterium bovis has contributed to human TB. We here explore the public health risk for bovine TB in Maputo, by characterizing the isolates from tuberculous lymphadenitis (TBLN) cases, a common manifestation of bovine TB in humans, in the Pathology Service of Maputo Central Hospital, in Mozambique, during one year. RESULTS: Among 110 patients suspected of having TBLN, 49 had a positive culture result. Of those, 48 (98 %) were positive for Mycobacterium tuberculosis complex and one for nontuberculous mycobacteria. Of the 45 isolates analysed by spoligotyping and Mycobacterial Interspersed Repetitive Unit - Variable Number Tandem Repeat (MIRU-VNTR), all were M. tuberculosis. No M. bovis was found. Cervical TBLN, corresponding to 39 (86.7 %) cases, was the main cause of TBLN and 66.7 % of those where from HIV positive patients. We found that TBLN in Maputo was caused by a variety of M. tuberculosis strains. The most prevalent lineage was the EAI (n?=?19; 43.2 %). Particular common spoligotypes were SIT 48 (EAI1_SOM sublineage), SIT 42 (LAM 9), SIT 1 (Beijing) and SIT53 (T1), similar to findings among pulmonary cases. CONCLUSIONS: M. tuberculosis was the main etiological agent of TBLN in Maputo. M. tuberculosis genotypes were similar to the ones causing pulmonary TB, suggesting that in Maputo, cases of TBLN arise from the same source as pulmonary TB, rather than from an external zoonotic source. Further research is needed on other forms of extrapulmonary TB and in rural areas where there is high prevalence of bovine TB in cattle, to evaluate the risk of transmission of M. bovis from cattle to humans.Swedish International Development Cooperation Agency / Department for Research Cooperation (Sida/SAREC) through Eduardo Mondlane University and Karolinska Institutet Research and Training (KIRT) collaboratio

    Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing

    Get PDF
    Background: The World Health Organization recommends drug-susceptibility testing of Mycobacterium tuberculosis complex for all patients with tuberculosis to guide treatment decisions and improve outcomes. Whether DNA sequencing can be used to accurately predict profiles of susceptibility to first-line antituberculosis drugs has not been clear. Methods: We obtained whole-genome sequences and associated phenotypes of resistance or susceptibility to the first-line antituberculosis drugs isoniazid, rifampin, ethambutol, and pyrazinamide for isolates from 16 countries across six continents. For each isolate, mutations associated with drug resistance and drug susceptibility were identified across nine genes, and individual phenotypes were predicted unless mutations of unknown association were also present. To identify how whole-genome sequencing might direct first-line drug therapy, complete susceptibility profiles were predicted. These profiles were predicted to be susceptible to all four drugs (i.e., pansusceptible) if they were predicted to be susceptible to isoniazid and to the other drugs or if they contained mutations of unknown association in genes that affect susceptibility to the other drugs. We simulated the way in which the negative predictive value changed with the prevalence of drug resistance. Results: A total of 10,209 isolates were analyzed. The largest proportion of phenotypes was predicted for rifampin (9660 [95.4%] of 10,130) and the smallest was predicted for ethambutol (8794 [89.8%] of 9794). Resistance to isoniazid, rifampin, ethambutol, and pyrazinamide was correctly predicted with 97.1%, 97.5%, 94.6%, and 91.3% sensitivity, respectively, and susceptibility to these drugs was correctly predicted with 99.0%, 98.8%, 93.6%, and 96.8% specificity. Of the 7516 isolates with complete phenotypic drug-susceptibility profiles, 5865 (78.0%) had complete genotypic predictions, among which 5250 profiles (89.5%) were correctly predicted. Among the 4037 phenotypic profiles that were predicted to be pansusceptible, 3952 (97.9%) were correctly predicted. Conclusions: Genotypic predictions of the susceptibility of M. tuberculosis to first-line drugs were found to be correlated with phenotypic susceptibility to these drugs. (Funded by the Bill and Melinda Gates Foundation and others.

    Identification of potential biomarkers of gold nanoparticle toxicity in rat brains

    No full text
    10.1186/1742-2094-9-123Journal of Neuroinflammation912

    In silico region of difference (RD) analysis of Mycobacterium tuberculosis complex from sequence reads using RD-Analyzer

    No full text
    10.1186/s12864-016-3213-1BMC Genomics17184

    Genetic diversity of <it>Mycobacterium tuberculosis</it> isolates from Beijing, China assessed by Spoligotyping, LSPs and VNTR profiles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tuberculosis is one of the most infectious diseases in the world. Molecular typing methods such as spoligotyping, and VNTR (variable number tandem repeats), IS<it>6110</it> in the NTF region and LSP (large sequence polymorphisms) analysis are generally useful tools for the resolution of various issues related to the classical epidemiology of <it>Mycobacterium tuberculosis</it> (<it>M. tuberculosis</it>).</p> <p>Methods</p> <p>To determine the transmission characteristics of <it>M. tuberculosis</it> strains isolated in Beijing, China, and their genetic relationships, especially those among Beijing family strains, 260 <it>M. tuberculosis</it> strains isolated from patients presenting pulmonary tuberculosis were analyzed by spoligotyping, and by examining 22 VNTR loci and the presence/absence of IS<it>6110</it> in the NTF region, RD105 and RD181.</p> <p>Results</p> <p>81% (211 strains) of the isolates studied were Beijing family strains, 174 (82.5%) of which were identified as modern Beijing strains based on the presence of IS<it>6110</it> upstream of the NTF region. RD181 was intact in 9 of the other 37 (17.5%) ancestral Beijing strains. The percentage of Beijing family strains in this study was consistent with previous reports. There are many differences, however, in allele diversity among VNTR loci between reports on strains from different areas.</p> <p>Conclusions</p> <p>The Beijing family is the most prevalent genotype in Beijing city and the predominance of Beijing family strains has not altered in almost twenty years. Differences in the alleles and discrimination ability of VNTR loci between different regions is likely due to population differences in the regions where these <it>M. tuberculosis</it> strains were isolated or to differences in sampling times.</p
    corecore