20 research outputs found

    Changes in persistent contaminant concentration and CYP1A1 protein expression in biopsy samples from northern bottlenose whales, Hyperoodon ampullatus, following the onset of nearby oil and gas development

    Get PDF
    Author Posting. Β© Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Environmental Pollution 152 (2008): 205-216, doi:10.1016/j.envpol.2007.05.027.A small population of endangered northern bottlenose whales (Hyperoodon ampullatus) inhabits β€œThe Gully” Marine Protected Area on the Scotian Shelf, eastern Canada. Amid concerns regarding nearby oil and gas development, we took 36 skin and blubber biopsy samples in 1996-97 (prior to major development) and 2002-03 (five years after development began), and 3 samples from a population in the Davis Strait, Labrador in 2003. These were analysed for cytochrome P4501A1 (CYP1A1) protein expression (n=36), and for persistent contaminants (n=23). CYP1A1 showed generally low expression in whales from The Gully, but higher levels during 2003, potentially co-incident with recorded oil spills, and higher levels in Davis Strait whales. A range of PCB congeners and organochlorine compounds were detected, with concentrations similar to other North Atlantic odontocetes. Concentrations were higher in whales from The Gully than from the Davis Strait, with significant increases in 4,4’-DDE and trans-nonachlor in 2002-03 relative to 1996-97.Research was funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada, World Wildlife Fund Canada Endangered Species Recovery Fund, Fisheries and Oceans Canada, the National Geographic Society, the Canadian Federation of Humane Societies and two U.K. Royal Society International Collaborative Awards. S.K.H. was supported by a Canadian Commonwealth Scholarship and Royal Society Dorothy Hodgkin Research Fellowship. C.D.M. was awarded a Discovery grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada. J.Y.W was supported by an NSERC PGS B fellowship and the Woods Hole Oceanographic Institution

    Transcriptional Responses of Cultured Rat Sympathetic Neurons during BMP-7-Induced Dendritic Growth

    Get PDF
    Dendrites are the primary site of synapse formation in the vertebrate nervous system; however, relatively little is known about the molecular mechanisms that regulate the initial formation of primary dendrites. Embryonic rat sympathetic neurons cultured under defined conditions extend a single functional axon, but fail to form dendrites. Addition of bone morphogenetic proteins (BMPs) triggers these neurons to extend multiple dendrites without altering axonal growth or cell survival. We used this culture system to examine differential gene expression patterns in naΓ―ve vs. BMP-treated sympathetic neurons in order to identify candidate genes involved in regulation of primary dendritogenesis.To determine the critical transcriptional window during BMP-induced dendritic growth, morphometric analysis of microtubule-associated protein (MAP-2)-immunopositive processes was used to quantify dendritic growth in cultures exposed to the transcription inhibitor actinomycin-D added at varying times after addition of BMP-7. BMP-7-induced dendritic growth was blocked when transcription was inhibited within the first 24 hr after adding exogenous BMP-7. Thus, total RNA was isolated from sympathetic neurons exposed to three different experimental conditions: (1) no BMP-7 treatment; (2) treatment with BMP-7 for 6 hr; and (3) treatment with BMP-7 for 24 hr. Affymetrix oligonucleotide microarrays were used to identify differential gene expression under these three culture conditions. BMP-7 significantly regulated 56 unique genes at 6 hr and 185 unique genes at 24 hr. Bioinformatic analyses implicate both established and novel genes and signaling pathways in primary dendritogenesis.This study provides a unique dataset that will be useful in generating testable hypotheses regarding transcriptional control of the initial stages of dendritic growth. Since BMPs selectively promote dendritic growth in central neurons as well, these findings may be generally applicable to dendritic growth in other neuronal cell types
    corecore