143 research outputs found

    Failure of a Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy of H. pylori Eradication in H. pylori-Infected Patients with Functional Dyspepsia

    Get PDF
    BACKGROUND/AIMS: The role of Helicobacter pylori eradication in patients with functional dyspepsia (FD) is still uncertain. We originally planned a randomized clinical study to observe dyspeptic symptoms after H. pylori eradication therapy. However, we failed to complete the study; therefore, we analyzed the factors that affected the failure of the study. METHODS: Interviews and questionnaire surveys were conducted to analyze the factors that induced early termination from the study. RESULTS: Many patients were screened by gastroenterologists at 11 tertiary referral hospitals between July 2009 and August 2010; however, only 4 patients met the enrollment criteria. Most patients who visited our clinics had been experiencing FD symptoms for less than 6 months or were already taking medication. They also demanded to continue taking medications and using other drugs. Only 3 of the 4 patients signed informed consent. CONCLUSIONS: The application of the current Rome III criteria to FD is difficult to evaluate in Korean patients with dyspeptic symptoms because of the early medical evaluation. Most Korean patients who were diagnosed with FD by the Rome III criteria did not overcome their fear of being unable to use rescue medications during the study period.ope

    KAI1 suppresses HIF-1α and VEGF expression by blocking CDCP1-enhanced Src activation in prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>KAI1 was initially identified as a metastasis-suppressor gene in prostate cancer. It is a member of the tetraspan transmembrane superfamily (TM4SF) of membrane glycoproteins. As part of a tetraspanin-enriched microdomain (TEM), KAI1 inhibits tumor metastasis by negative regulation of Src. However, the underlying regulatory mechanism has not yet been fully elucidated. CUB-domain-containing protein 1 (CDCP1), which was previously known as tetraspanin-interacting protein in TEM, promoted metastasis via enhancement of Src activity. To better understand how KAI1 is involved in the negative regulation of Src, we here examined the function of KAI1 in CDCP1-mediated Src kinase activation and the consequences of this process, focusing on HIF-1 α and VEGF expression.</p> <p>Methods</p> <p>We used the human prostate cancer cell line PC3 which was devoid of KAI1 expression. Vector-transfected cells (PC3-GFP clone #8) and KAI1-expressing PC3 clones (PC3-KAI1 clone #5 and #6) were picked after stable transfection with KAI1 cDNA and selection in 800 <it>μ</it>g/ml G418. Protein levels were assessed by immunoblotting and VEGF reporter gene activity was measured by assaying luciferase activitiy. We followed tumor growth <it>in vivo </it>and immunohistochemistry was performed for detection of HIF-1, CDCP1, and VHL protein level.</p> <p>Results</p> <p>We demonstrated that Hypoxia-inducible factor 1α (HIF-1α) and VEGF expression were significantly inhibited by restoration of KAI1 in PC3 cells. In response to KAI1 expression, CDCP1-enhanced Src activation was down-regulated and the level of von Hippel-Lindau (VHL) protein was significantly increased. In an <it>in vivo </it>xenograft model, KAI1 inhibited the expression of CDCP1 and HIF-1α.</p> <p>Conclusions</p> <p>These novel observations may indicate that KAI1 exerts profound metastasis-suppressor activity in the tumor malignancy process via inhibition of CDCP1-mediated Src activation, followed by VHL-induced HIF-1α degradation and, ultimately, decreased VEGF expression.</p

    CrossMoDA 2021 challenge: Benchmark of Cross-Modality Domain Adaptation techniques for Vestibular Schwannoma and Cochlea Segmentation

    Full text link
    Domain Adaptation (DA) has recently raised strong interests in the medical imaging community. While a large variety of DA techniques has been proposed for image segmentation, most of these techniques have been validated either on private datasets or on small publicly available datasets. Moreover, these datasets mostly addressed single-class problems. To tackle these limitations, the Cross-Modality Domain Adaptation (crossMoDA) challenge was organised in conjunction with the 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). CrossMoDA is the first large and multi-class benchmark for unsupervised cross-modality DA. The challenge's goal is to segment two key brain structures involved in the follow-up and treatment planning of vestibular schwannoma (VS): the VS and the cochleas. Currently, the diagnosis and surveillance in patients with VS are performed using contrast-enhanced T1 (ceT1) MRI. However, there is growing interest in using non-contrast sequences such as high-resolution T2 (hrT2) MRI. Therefore, we created an unsupervised cross-modality segmentation benchmark. The training set provides annotated ceT1 (N=105) and unpaired non-annotated hrT2 (N=105). The aim was to automatically perform unilateral VS and bilateral cochlea segmentation on hrT2 as provided in the testing set (N=137). A total of 16 teams submitted their algorithm for the evaluation phase. The level of performance reached by the top-performing teams is strikingly high (best median Dice - VS:88.4%; Cochleas:85.7%) and close to full supervision (median Dice - VS:92.5%; Cochleas:87.7%). All top-performing methods made use of an image-to-image translation approach to transform the source-domain images into pseudo-target-domain images. A segmentation network was then trained using these generated images and the manual annotations provided for the source image.Comment: Submitted to Medical Image Analysi

    Impact of diabetes mellitus on mortality in patients with acute heart failure: a prospective cohort study

    Get PDF
    Although more than one-third of the patients with acute heart failure (AHF) have diabetes mellitus (DM), it is unclear if DM has an adverse impact on clinical outcomes. This study compared the outcomes in patients hospitalized for AHF stratified by DM and left ventricular ejection fraction (LVEF). The Korean Acute Heart Failure registry prospectively enrolled and followed 5625 patients from March 2011 to February 2019. The primary endpoints were in-hospital and overall all-cause mortality. We evaluated the impact of DM on these endpoints according to HF subtypes and glycemic control. During a median follow-up of 3.5years, there were 235 (4.4%) in-hospital mortalities and 2500 (46.3%) overall mortalities. DM was significantly associated with increased overall mortality after adjusting for potential confounders (adjusted hazard ratio [HR] 1.11, 95% confidence interval [CI] 1.03–1.22). In the subgroup analysis, DM was associated with higher a risk of overall mortality in heart failure with reduced ejection fraction (HFrEF) only (adjusted HR 1.14, 95% CI 1.02–1.27). Inadequate glycemic control (HbA1c ≥ 7.0% within 1year after discharge) was significantly associated with a higher risk of overall mortality compared with adequate glycemic control (HbA1c < 7.0%) (44.0% vs. 36.8%, log-rank p = 0.016). DM is associated with a higher risk of overall mortality in AHF, especially HFrEF. Well-controlled diabetes (HbA1c < 7.0%) is associated with a lower risk of overall mortality compared to uncontrolled diabetes. Trial registration ClinicalTrial.gov, NCT01389843. Registered July 6, 2011. https://clinicaltrials.gov/ct2/show/NCT01389843This study was supported by Research of Korea Centers for Disease Control and Prevention (2010-E63003-00, 2011-E63002-00, 2012-E63005-00, 2013E63003-00, 2013-E63003-01, 2013-E63003-02, and 2016-ER6303-00)

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
    corecore