1,185 research outputs found

    Scaling of spontaneous rotation with temperature and plasma current in tokamaks

    Get PDF
    Using theoretical arguments, a simple scaling law for the size of the intrinsic rotation observed in tokamaks in the absence of momentum injection is found: the velocity generated in the core of a tokamak must be proportional to the ion temperature difference in the core divided by the plasma current, independent of the size of the device. The constant of proportionality is of the order of 10 km⋅s−1⋅MA⋅keV−110\,\mathrm{km \cdot s^{-1} \cdot MA \cdot keV^{-1}}. When the intrinsic rotation profile is hollow, i.e. it is counter-current in the core of the tokamak and co-current in the edge, the scaling law presented in this Letter fits the data remarkably well for several tokamaks of vastly different size and heated by different mechanisms.Comment: 5 pages, 3 figure

    Effect of toroidal field ripple on plasma rotation in JET

    Get PDF
    Dedicated experiments on TF ripple effects on the performance of tokamak plasmas have been carried out at JET. The TF ripple was found to have a profound effect on the plasma rotation. The central Mach number, M, defined as the ratio of the rotation velocity and the thermal velocity, was found to drop as a function of TF ripple amplitude (3) from an average value of M = 0.40-0.55 for operations at the standard JET ripple of 6 = 0.08% to M = 0.25-0.40 for 6 = 0.5% and M = 0.1-0.3 for delta = 1%. TF ripple effects should be considered when estimating the plasma rotation in ITER. With standard co-current injection of neutral beam injection (NBI), plasmas were found to rotate in the co-current direction. However, for higher TF ripple amplitudes (delta similar to 1%) an area of counter rotation developed at the edge of the plasma, while the core kept its co-rotation. The edge counter rotation was found to depend, besides on the TF ripple amplitude, on the edge temperature. The observed reduction of toroidal plasma rotation with increasing TF ripple could partly be explained by TF ripple induced losses of energetic ions, injected by NBI. However, the calculated torque due to these losses was insufficient to explain the observed counter rotation and its scaling with edge parameters. It is suggested that additional TF ripple induced losses of thermal ions contribute to this effect

    Deuterium Balmer/Stark spectroscopy and impurity profiles: first results from mirror-link divertor spectroscopy system on the JET ITER-like wall

    Get PDF
    For the ITER-like wall, the JET mirror link divertor spectroscopy system was redesigned to fully cover the tungsten horizontal strike plate with faster time resolution and improved near-UV performance. Since the ITER-like wall project involves a change in JET from a carbon dominated machine to a beryllium and tungsten dominated machine with residual carbon, the aim of the system is to provide the recycling flux, equivalent, to the impinging deuterium ion flux, the impurity fluxes (C, Be, O) and tungsten sputtering fluxes and hence give information on the tungsten divertor source. In order to do this self-consistently, the system also needs to provide plasma characterization through the deuterium Balmer spectra measurements of electron density and temperature during high density. L-Mode results at the density limit from Stark broadening/line ratio analysis will be presented and compared to Langmuir probe profiles and 2D-tomography of low-n Balmer emission [1]. Comparison with other diagnostics will be vital for modelling attempts with the EDGE2D-EIRENE code[2] as the best possible data sets need to be provided to study detachment behaviour.Comment: 18 pages, 11 figure
    • …
    corecore