4,315 research outputs found

    Mechanosensitivity of the 2nd Kind: TGF-ÎČ Mechanism of Cell Sensing the Substrate Stiffness.

    Get PDF
    Cells can sense forces applied to them, but also the stiffness of their environment. These are two different phenomena, and here we investigate the mechanosensitivity of the 2nd kind: how the cell can measure an elastic modulus at a single point of adhesion-and how the cell can receive and interpret the chemical signal released from the sensor. Our model uses the example of large latent complex of TGF-ÎČ as a sensor. Stochastic theory gives the rate of breaking of latent complex, which initiates the signaling feedback loop after the active TGF-ÎČ release and leads to a change of cell phenotype driven by the α-smooth muscle actin. We investigate the dynamic and steady-state behaviors of the model, comparing them with experiments. In particular, we analyse the timescale of approach to the steady state, the stability of the non-linear dynamical system, and how the steady-state concentrations of the key markers vary depending on the elasticity of the substrate. We discover a crossover region for values of substrate elasticity closely corresponding to that of the fibroblast to myofibroblast transition. We suggest that the cell could actively vary the parameters of its dynamic feedback loop to 'choose' the position of the transition region and the range of substrate elasticity that it can detect. In this way, the theory offers the unifying mechanism for a variety of phenomena, such as the myofibroblast conversion in fibrosis of wounds and lungs and smooth muscle cell dysfunction in cardiac disease.This work was supported by the EPSRC Critical Mass grant for Theoretical Condensed Matter, the Sims Scholarship, and the Cambridge Trusts, and the University of Sydney.This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pone.013995

    Determination of rolling element bearing condition via acoustic emission

    Get PDF
    Acoustic emission is an emerging technique for condition monitoring of rolling element bearings and potentially offers advantages for detection of incipient damage at an early stage of failure. Before such a technique can be applied with confidence for health monitoring, it is vital to understand the variation of acoustic emission generation with operating conditions in a healthy bearing. This paper investigates the effects of increased speed and load on the generation of acoustic emission within cylindrical roller bearings, and it was found that the root mean square signal level increased significantly with increasing speed whereas increasing load had a far weaker effect. The AERMS value for each experiment was compared with the trend of the Lambda value. The bearing was operating under full film lubrication regime, so it was determined that increases in AERMS were not caused by asperity contact. By consideration of trends in frequency energy amplitude, it was determined that excitation of the bearings resonant frequencies were responsible for an increase of energy in the frequency range of 20–60 kHz. The excitation energy at 330 kHz (the acoustic emission sensor’s resonant frequency) increased with load, indicating a link between high-frequency emission and stress at the contact zone. Following characterisation of the bearing under normal operating conditions, an accelerated life test was conducted in order to induce fatigue failure. The frequency response demonstrated that throughout a period of constant wear, the energy amplitude at the bearings resonant frequency increased with time. As the bearing failure became more significant, the energy of the high-frequency components above 100 kHz was spread over a broader frequency range as multiple transient bursts of energy were released simultaneously by fatigue failure of the raceways. This paper demonstrates the potential of acoustic emission to provide an insight into the bearing’s behaviour under normal operation and provide early indication of bearing failure

    Impact of Progress testing on the learning experiences of students in medicine, dentistry and dental therapy

    Get PDF
    To investigate the impact of progress testing on the learning experiences of undergraduate students in three programs namely, medicine, dentistry and dental therapy

    Blockade of T-cell activation by dithiocarbamates involves novel mechanisms of inhibition of nuclear factor of activated T cells.

    Get PDF
    Dithiocarbamates (DTCs) have recently been reported as powerful inhibitors of NF-kappaB activation in a number of cell types. Given the role of this transcription factor in the regulation of gene expression in the inflammatory response, NF-kappaB inhibitors have been suggested as potential therapeutic drugs for inflammatory diseases. We show here that DTCs inhibited both interleukin 2 (IL-2) synthesis and membrane expression of antigens which are induced during T-cell activation. This inhibition, which occurred with a parallel activation of c-Jun transactivating functions and expression, was reflected by transfection experiments at the IL-2 promoter level, and involved not only the inhibition of NF-kappaB-driven reporter activation but also that of nuclear factor of activated T cells (NFAT). Accordingly, electrophoretic mobility shift assays (EMSAs) indicated that pyrrolidine DTC (PDTC) prevented NF-kappaB, and NFAT DNA-binding activity in T cells stimulated with either phorbol myristate acetate plus ionophore or antibodies against the CD3-T-cell receptor complex and simultaneously activated the binding of AP-1. Furthermore, PDTC differentially targeted both NFATp and NFATc family members, inhibiting the transactivation functions of NFATp and mRNA induction of NFATc. Strikingly, Western blotting and immunocytochemical experiments indicated that PDTC promoted a transient and rapid shuttling of NFATp and NFATc, leading to their accelerated export from the nucleus of activated T cells. We propose that the activation of an NFAT kinase by PDTC could be responsible for the rapid shuttling of the NFAT, therefore transiently converting the sustained transactivation of this transcription factor that occurs during lymphocyte activation, and show that c-Jun NH2-terminal kinase (JNK) can act by directly phosphorylating NFATp. In addition, the combined inhibitory effects on NFAT and NF-KB support a potential use of DTCs as immunosuppressants

    An empirical investigation of dance addiction

    Get PDF
    Although recreational dancing is associated with increased physical and psychological well-being, little is known about the harmful effects of excessive dancing. The aim of the present study was to explore the psychopathological factors associated with dance addiction. The sample comprised 447 salsa and ballroom dancers (68% female, mean age: 32.8 years) who danced recreationally at least once a week. The Exercise Addiction Inventory (Terry, Szabo, & Griffiths, 2004) was adapted for dance (Dance Addiction Inventory, DAI). Motivation, general mental health (BSI-GSI, and Mental Health Continuum), borderline personality disorder, eating disorder symptoms, and dance motives were also assessed. Five latent classes were explored based on addiction symptoms with 11% of participants belonging to the most problematic class. DAI was positively associated with psychiatric distress, borderline personality and eating disorder symptoms. Hierarchical linear regression model indicated that Intensity (ß=0.22), borderline (ß=0.08), eating disorder (ß=0.11) symptoms, as well as Escapism (ß=0.47) and Mood Enhancement (ß=0.15) (as motivational factors) together explained 42% of DAI scores. Dance addiction as assessed with the Dance Addiction Inventory is associated with indicators of mild psychopathology and therefore warrants further research

    Revisiting the exercise heart rate-music tempo preference relationship

    Get PDF
    In the present study, we investigated a hypothesized quartic relationship (meaning three inflection points) between exercise heart rate (HR) and preferred music tempo. Initial theoretical predictions suggested a positive linear relationship (Iwanaga, 1995a, 1995b); however, recent experimental work has shown that as exercise HR increases, step changes and plateaus that punctuate the profile of music tempo preference may occur (Karageorghis, Jones, & Stuart, 2008). Tempi bands consisted of slow (95–100 bpm), medium (115–120 bpm), fast (135–140 bpm), and very fast (155–160 bpm) music. Twenty-eight active undergraduate students cycled at exercise intensities representing 40, 50, 60, 70, 80, and 90% of their maximal HR reserve while their music preference was assessed using a 10-point scale. The Exercise Intensity x Music Tempo interaction was significant, F(6.16, 160.05) = 7.08, p < .001, ηp 2 =.21, as was the test for both cubic and quartic trajectories in the exercise HR–preferred-music-tempo relationship (p < .001). Whereas slow tempo music was not preferred at any exercise intensity, preference for fast tempo increased, relative to medium and very fast tempo music, as exercise intensity increased. The implications for the prescription of music in exercise and physical activity contexts are discussed

    A Study of Cosmic Ray Composition in the Knee Region using Multiple Muon Events in the Soudan 2 Detector

    Full text link
    Deep underground muon events recorded by the Soudan 2 detector, located at a depth of 2100 meters of water equivalent, have been used to infer the nuclear composition of cosmic rays in the "knee" region of the cosmic ray energy spectrum. The observed muon multiplicity distribution favors a composition model with a substantial proton content in the energy region 800,000 - 13,000,000 GeV/nucleus.Comment: 38 pages including 11 figures, Latex, submitted to Physical Review
    • 

    corecore