69 research outputs found

    Optimized quantum nondemolition measurement of a field quadrature

    Full text link
    We suggest an interferometric scheme assisted by squeezing and linear feedback to realize the whole class of field-quadrature quantum nondemolition measurements, from Von Neumann projective measurement to fully non-destructive non-informative one. In our setup, the signal under investigation is mixed with a squeezed probe in an interferometer and, at the output, one of the two modes is revealed through homodyne detection. The second beam is then amplitude-modulated according to the outcome of the measurement, and finally squeezed according to the transmittivity of the interferometer. Using strongly squeezed or anti-squeezed probes respectively, one achieves either a projective measurement, i.e. homodyne statistics arbitrarily close to the intrinsic quadrature distribution of the signal, and conditional outputs approaching the corresponding eigenstates, or fully non-destructive one, characterized by an almost uniform homodyne statistics, and by an output state arbitrarily close to the input signal. By varying the squeezing between these two extremes, or simply by tuning the internal phase-shift of the interferometer, the whole set of intermediate cases can also be obtained. In particular, an optimal quantum nondemolition measurement of quadrature can be achieved, which minimizes the information gain versus state disturbance trade-off

    Soliton back-action evading measurement using spectral filtering

    Get PDF
    We report on a back-action evading (BAE) measurement of the photon number of fiber optical solitons operating in the quantum regime. We employ a novel detection scheme based on spectral filtering of colliding optical solitons. The measurements of the BAE criteria demonstrate significant quantum state preparation and transfer of the input signal to the signal and probe outputs exiting the apparatus, displaying the quantum-nondemolition (QND) behavior of the experiment.Comment: 5 pages, 5 figure

    Teleportation of continuous variable polarisation states

    Get PDF
    This paper discusses methods for the optical teleportation of continuous variable polarisation states. We show that using two pairs of entangled beams, generated using four squeezed beams, perfect teleportation of optical polarisation states can be performed. Restricting ourselves to 3 squeezed beams, we demonstrate that polarisation state teleportation can still exceed the classical limit. The 3-squeezer schemes involve either the use of quantum non-demolition measurement or biased entanglement generated from a single squeezed beam. We analyse the efficacies of these schemes in terms of fidelity, signal transfer coefficients and quantum correlations

    Squeezing more from a quantum nondemolition measurement

    Get PDF
    We use a stable, 5 dB, amplitude squeezed source for a quantum nondomolition (QND) experiment. The performance of our QND system is enhanced by an electro-optic feedforward loop which improve,, the signal transfer efficiency. At best, we measure a total signal transfer of 1.81 and conditional variance of 0.55

    QDB: A new database of plasma chemistries and reactions

    Get PDF
    One of the most challenging and recurring problems when modeling plasmas is the lack of data on the key atomic and molecular reactions that drive plasma processes. Even when there are data for some reactions, complete and validated datasets of chemistries are rarely available. This hinders research on plasma processes and curbs development of industrial applications. The QDB project aims to address this problem by providing a platform for provision, exchange, and validation of chemistry datasets. A new data model developed for QDB is presented. QDB collates published data on both electron scattering and heavy-particle reactions. These data are formed into reaction sets, which are then validated against experimental data where possible. This process produces both complete chemistry sets and identifies key reactions that are currently unreported in the literature. Gaps in the datasets can be filled using established theoretical methods. Initial validated chemistry sets for SF 6 /CF 4 /O 2 and SF 6 /CF 4 /N 2 /H 2 are presented as examples

    SOCIAL-ECOLOGICAL SYSTEMS ANALYSIS IN COASTAL AND MARINE AREAS: A PATH TOWARD INTEGRATION OF INTERDISCIPLINARY KNOWLEDGE

    No full text
    We discuss the epistemological aspects of social-ecological systems (SES) analysis, particularly in relation to coastal and marine research and the integrated coastal zone management (ICZM), but also in relation to interdisciplinary approaches and frameworks such as sustainability science and sustainable resource management. From this discussion, we propose suggestions on how to develop SES as a framework for interdisciplinary social-ecological research. We conclude that a knowledge-based strategy to systematically address complex problems can be constructed. A knowledge-based strategy can also study ecological and social processes at different system dimensions and scales, from local to global. SES analysis holds promise if it is developed along inclusive, interdisciplinary lines on an epistemologically balanced and theoretically and methodologically sound basis
    corecore