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Teleportation of continuous-variable polarization states
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This paper discusses methods for the optical teleportation of continuous-variable polarization states. We
show that using two pairs of entangled beams, generated using four squeezed beams, perfect teleportation of
optical polarization states can be performed. Restricting ourselves to three squeezed beams, we demonstrate
that polarization state teleportation can still exceed the classical limit. The three-squeezer schemes involve
either the use of quantum nondemolition measurement or biased entanglement generated from a single
squeezed beam. We analyze the efficacies of these schemes in terms of fidelity, signal transfer coefficients, and
guantum correlations.
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[. INTRODUCTION elegantly visualized on a Poincasphere shown in Fig. 1.
The orientation of the Stokes vector describes the polariza-

Quantum teleportatiofl] is an important operation for tion state of the laser beam wis giving the intensity dif-
the transmission and manipulation of quantum states and iference between the horizontally and vertically polarized

formation. It has been experimentally demonstrated in bo“&omponents of the beam a® giving the intensity differ-

discrete[2] and continuous-variabl3,4] regimes. To date, gnce petween the diagonally and antidiagonally polarized
continuous-variable teleportation protocols have been per- . e P
formed solely on the quadrature amplitudes of optical ﬁelds'componentsA. The azimuthal deviation from teS, plane
Recently there has been growing interest in continuoustowards theS; axis indicates the ellipticity of the polariza-
variable polarization states in the context of quantum inforlion state. By drawing an analogy with classical Stokes pa-
mation schemes. Experimental demonstrations of polariza@meters a set of Stokes operators can be defined, providing
tion squeezing[5-9] and entanglemenf10] have been & conve_nient description of the quantum polarization proper-
performed. A practical advantage of polarization states whe#es of light[13,14]:

applied to quantum information networks is that a network-

wide frequency reference is not requirgd]. Furthermore, So:aEaH+a¢/av=nH+nv'

quantum communication networks are expected to require o

the ability to transfer quantum information between optical Sl=aLaH—a:r,aV=nH—nV,

and atomic states. This has been experimentally demon- )
strated between optical polarization states and atomic spin S,=alas e ’+ala e ’=ny—np,

ensemble§8]. It is then natural to ask how quantum telepor-
tation can be optimally implemented on continuous-variable
polarization states.

This paper is arranged in the following way. Section Il yere the polarization mode is constructed in terms of anni-
reviews the use of Stokes operators to characterize the quaps o a o~y .
ilation a and creatiora' operators of the horizontd and

tum properties of polanzec_j “ght' In Sec. Il we discuss tWOverticaIV constituent modes, with a phagebetween them.
commonly used teleportation figures of merit in the context

of quadrature teleportation. Section IV proposes a straight] Nes€ operators can be writtena(s) = « + éa(t), wherea
forward generalization of quadrature teleportation to polaris the classical amplitude angh(t) is the operator contain-

ization teleportation, and generalizes the teleportation figureig the quantum fluctuations Withgé(t),gé’r(t)]zl and
of merit to polarization states. In Secs. V, VI, and VIl modi- (5&(0}:0. We will assume that |a|=(|é(t)|>

fications of this protocol, which optimize these figures 0f>(|5£1(t)|2), allowing a linearization of the operator equa-

merit are discussed. We summarize and conclude in Se%.
Vil lons.

S, commutes with the other Stokes operators and its ex-
pectation value is proportional to the total intensity of the
light beam.S;, S,, andS;, however, obey a coupled set of

In classical optics the polarization state of light can becommutation relations and are isomorphic to the Pauli ma-
described using Stokes parameters, where an arbitrary polarices:[S,S,,]=2iS,, where{l,m,n}={1,2,3 and are cy-
ization state is decomposed into three components: linealically interchangeable. This says that simultaneous mea-
(vertical/horizontal, diagonal (+45°/—45°), and circular surements of these Stokes operators are, in general,
(left/right handed [12]. This vector representation can be impossible and their variances are restricted by

AS3: ié;r/éHe—iH_ iéLéVei 0= ﬁR_ ﬁL .

1. BACKGROUND
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8S,= ay 6X}, — ayoXy (4

8S,= ay(8Xy sin 6+ X, cos)
+ ay( 8X{;cos0— 65X sinh), (5)

8S,= ay(8Xy sin — 85X, cosh)
— classical Poincaré surface _ .
..... quantum Poincaré surface + av( 5XH cosf+ 5XH Sin 0), (6)

FIG. 1. The quantum Poincasphere. In the classical caSg, whereX™ () are the usual amplitudghase quadrature op-
the total photon number is the radius of the sphere, whereas in

; K+ —(sat sat S~ —i(sat
quantum picture the radius takes a larger valug/§+280 due to era’Eors, defined assX™=(da+da’) and aX _—|(6.a
the quantum uncertainfi1]. The presence of the uncertainty rela- — 9@)- It can be seen from EQ$4)—(§) that the linearized
tions[Eq. (2)] manifests itself in the quantum noise “ball” as indi- Stokes operators are a linear combination of the quadrature
cated. operators for the two modes.
In this paper we are interested in fluctuations at a fre-
VAY. >|<§n>|2 @) quencyw around _the opticql carrier frequency. The Fourier
’ transform of the time domain Stokes operators will be taken
Here,V,=<(§|)2>—<§|>2 is the variance of each Stokes op- from now on, with all the _operators being in the frequency
erator. doma}m. .We mclude_the signal at.frequenoy gncoded on
The length of the quantum Stokes vector in Fig. 1 iSpoIaAr|zat|on modulation as a classical fluctuations term, mak-

K(SD+2(Sy), which always exceeds its classical counter-iNg 8= ac+ 684+ da.. Unlike gquantum fluct_uauonsSa?,

part. The coupled uncertainty relations of the Stokes varihe introducedsa. term is purely classical withda,, 5a]

ances in Eq(2) are exhibited further in the appearance of a=0. Thea operator expansions substituted into Stokes equa-

three-dimensional noise “ball,” superimposed on the Poin-tions (1) yield linearized Eqs(4)—(6) in frequency domain

caresurface, at the end of the Stokes vector. In the case afhere SX* = 65X + 55(5 . Hence there are two independent

coherent polarization states this ball is spherical. sources of fluctuations, the classical signand the quan-
The field operatora(t),a’(t) are now expanded in terms tum noiseq. The variances/(53) of the Stokes operators

of their dc and fluctuating components. Keeping only themay be calculated from Eq&4)—(6):

first-order fluctuation terms, Eq¢l) yield linearized equa-

tions for the fluctuations in the Stokes operators: Vs, = afi(Vii o+ Vi o)+ af(Vy o+ Vy )

5Sy= ay OX + ay OXy 3 +2aay( Xy OX o), @)

Vs, = afi(€080)%(Vy o+ Vy g) + af(€0s0) 2V} o+ Vi )+ afi(sin0)X(Vy o+ Vy )+ af(sin0)* (Vi o+ Vi o)
+2apaysin @ coso( SXy (OX}; o)+ 2apay(Cos0)%( SXy OX{; o)+ 2afsin 0 cose( 5Xy 5Xy o)
— 2apaysin @ cost( SXy OXp o) — 2apay(sin 0)%(SXy (0Xp o) — 2adsin 6 cosé( 5X}; 5Xq o), (8)
Vs, = a}i(€080)%(Vy o+ Vy ) + ag(€0S0)* (Vg o+ Vi o) + afi(sin 0)2(Vy o+ Vy o) + ag(sin 0)2(V) o+ V) o)
+2apaysin 0 cosO( SXy, SXp o) + 2apay(sin 0)2(SXy OX{; o) +2adsin 6 cosé( 5X}; 5Xq o)

—2apaySin @ cost( SXy (OX}; o) — 2anay(Cos0) % SXy 0Xp o) — 2afsin 0 cosd( SXy, 5Xy o)- ©)

The variance terms with subscript™ represent a delier-  statistics. Unless squeezed, the quantum terms will be at the
ately applied signal, distinct from the quantum noise termsstandard quantum limit an\dﬁ,v’q=1.
with subscript ‘q.” In general, classical modulation correla-
tions can exist and additional cross terms, such as
(8%} <6Xy o), may appear. These are included for complete-
ness, although they are not considered in the modeling that
follows in later sections. In the following sections, we will  The figures of merit that we consider here for polarization
assume that the light beams are pure states with Gaussiégleportation are generalizations of those previously used for

Ill. FIGURES OF MERIT FOR QUADRATURE
TELEPORTATION
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guadrature teleportation, namely, theV measure and fidel- ( I N
ity [4]. In this section, we present the relevant definitions of CS/ Al \
quadrature teleportation. The extension of the parameters is > —D—D—»
then presented in later sections. &

Fidelity is one way to quantify the success of a quantum & Q):Z M
state reconstruction for many quantum protocols. It is given } Dy A+
by the overlap integral of the initial and final wave functions, 62%\
F=tinl poud i) P, Where| ) is the input state angly, is N %
the density operator of the output. For Gaussian input states PBS ./
the statistics of a laser beam are fully described by the first : quadrature teleporter :

VaEEEEEEEEEEEEEEEEEEEEEEEEEnennnend

two statistical moments: the mean and the variance. WherPolarized Horizontal

unity gain is assumed for the reconstruction, that is, the outSignallN Y Sianal - esesemmsssnmnmssnanny, |PBS

put state has the same classical amplitude as the input, and Tt>l—‘ quadrature teleporter i
when the input states are coherent, =1, the expres- Signal
i i i i i Polarized
sion for fidelity is given by Signal OUT
2 FIG. 2. Polarization state teleportation scheme with twin tele-
F= \/(V+ +1)(V,, +1)' (10) porters. EPR1,2, two entangled bearBs; , amplitude/phase ho-
out out modyne detectors;+/—, amplitude/phase modulatorsa.. ,

- ) .. amplitude/phase feed-forward gains; and PBS, polarizing beam-

where V,,, are the output quadrature variances. Variationsg,iper. A standard quadrature teleporter is shown in the inset.

away from unity gain typically lead to an exponentially de-

creasing fidelity valug4]. _ exactly, giving the lower bound &fT""=0. At unity gain the
The case ofF=0 implies that the input and the output are classical limit is again the double vacuum noise penalty.

orthogonal and bear no resemblance to each other, While Hencevdassie= 2,

=1 suggests perfect reconstruction of the input. In the ab- The T, andV,, parameters can be plotted orTaV dia-

sence of entanglement, the classical fidelity limit for thegram as'a function of the teleportation feed-forward gains.

quadrature teleportation of a coherent staté&+s; [3]. Once evaluated, both Eqd.1) and(12) become independent

Another useful way of quantifying teleportation is via a of the input signal amplitudes and E@.2) is also indepen-
T-V diagram[16]. Here two parameters are considered. Thegent of the input noise.

first parameter is the signal transfer coefficigrit, which is Note that a more stringent teleportation criteria is the
the ratio of the s!gnal—to-n0|se ratf® of the output to that of  passing of the no-cloning limi{tL7]. At unity gain this cor-
the input for a given quadrature, responds to a fidelity of 2/3 or equivalently to entering the
lower right-hand quadrant of thie-V diagram. For simplicity
Raw Rou we consider here only the two criteria described above.
T=T +T =— —. (1)
R Rin

n

IV. POLARIZATION STATE TELEPORTATION

. . . . . WITH TWIN TELEPORTERS
When no information is recovered there is no signal, hence

T,=0. For ideal teleportation, the transfer coefficient has We note from Eqs(7)—(9) that polarization states can be
R in=TR o for both quadratures, as the vacuum noise probcompletely described by the quadrature amplitudes of both
lem is circumvented. This gives the ideal two quadraturghe horizontal and vertical polarization modes. The obvious
limit of T'™=2. The classical limit at unity gain is given by way to teleport an input polarization state is, therefore, to
Tclassi%ﬂ:%_ decompose the input beam into a horizontally and a verti-
The second parameter of tieV diagram is the condi- Ccally polarized beam via a polarizing beam splitter as shown
tional variancey,= %(V§V+ V), which is a measure of the in F|g. 2[18]. Two standard contlnuous—yarlgble quadrature
correlation between the input and the output quadratures, arﬂiﬂp“tl"de teleporters, one for each polarlzatlon mode, can be
is defined as used to teleport the orthogonally polarized beams The com-
plete task thus requires four squeezed beams for the genera-
SRS tion of two pairs of quadrature entanglement. Finally, the
Vi=VE — (16X X oud >_ (12) f[eleported states are recombingd at the receiving station us-
Vi, ing another polarizing beamsplitter.
The teleportation fidelity for this system is shown in Fig.
For Gaussian input states, it can be shown Wgt=V,,(1  7(&). Assuming that all four beams are equally squeezed, the
—T*), whereV,,, is the output of the system with no signal €Xpression for the fidelity of the twin teleporters scheme be-
input[16]. The conditional variance is a measure of quantunf0mes
correlation between the input and the output states and it
reflects the amount of noise added to the output state by the F= 1 (13)
teleporter. Ideal quadrature teleportation replicates the input (Vsot 1)2’
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€ 50/50
=
Arbitrary A
polarization \] 4 R
PBS PBS
Vertical Arbitrary
H L polarization A polarization
) i

Teleportation
Protocol

FIG. 4. Classical control system for measuring and controlling
the polarization of carrier field. This figure demonstrates that input
polarization state can be measured and fed forward to control the
polarization state of another beam.beam splitter with low trans-
mittivity; H/V, horizontal/vertical polarization detectiorR/L,
right/left circular polarization detection; PBS, polarizing beam split-
ter; N/2, half-wave plate; and/4, quarter-wave plate. The vertical
output is subsequently teleported by a chosen protocol and returned
back to its original polarization at the receiving station.

FIG. 3. T-V plot of the teleportation of polarization state with
twin teleporters(a) with coherent stategb) with 3-dB squeezing
(Vso=0.5), and(c) with 10-dB squeezingVWsq=0.1) as a function
of feed-forward gain.(d) Locus of unity gain points from no

squeezing to perfect squeezing. V. SQD-TELEPORTER SCHEME

whereVso is the variance of the squeezed quadratures of the Inspection of the Stokes operators shows that sige

beams used to produce the entanglement. Since the fideliti€@mmutes withS;, S,, andS;, it can be measured with no

for the vertical and horizontal modes are independent, th@enalty on the remaining three operators. For quadrature

fidelity is calculated from a four-dimensional overlap inte- teleportation two squeezed beams enable teleportation of two

gral between the input and output states. Equatit) is  variablessX~ and 8X . This raises the question of whether

derived simply by squaring the quadrature teleporter fidelitypolarization teleportation could be achieved using only three

We note that the classical limit of this polarization teleportersqueezed beamgor S;, S,, and S;) rather than the four

is F<3 and ideal polarization teleportation has fidelity 1. utilized in the previous schermeChoosing the polarization
The results off-V analysis for this scheme are illustrated of the carrier beam to be vertical causes sheterms in Egs.

in Fig. 3. Similar to the quadrature teleporter, the conditional(4)_(6) to vanish, giving

variance is now extended t¢,=7(Vé T Veunt Vany

+Vg,y) and the total signal transfer coefficient is now given 8SP= — o, 5Xy (14)

by T,=T,,+ Ty +Ty+Ty . For ideal squeezing, we obtain

Voy—0 andT,—4. 8559P= ary(5X{, cos0— 8X;;sin 6), (15
So far, we have chosen to ignore the classical amplitude

of our input state. Although the fluctuations in the input po- 5§§QD= ay( X5 cosh+ 5X;sin 6). (16)

larization are teleported by the twin teleporters, the polariza-

tion of the input carrier field is not teleported This iS at first The linearized variances for the vertical carrier Stokes

thought, analogous to quadrature teleportation where the cafyctuations from Eqs(7)—(9) now simplify to
rier amplitude, or the optical intensity, of the input beam is

assumed to be unimportant in the reconstruction of the quan- V§§D: a?Vy, (17)
tum state at the sideband frequency. Besides, it is relatively 1

trivial to replicate the input intensity at the output. Interest- sQD_ - ot 2y o,

ingly, however, Eqs(7)—(9) suggest that the polarization of Vs, = av(CosO)*Vy +ay(sin 0)°Vy

the input carrier field cannot be ignored in the teleportation ) . N 3

of polarization states. This is due to the fact that uncertainty —2aysin cosO( Xy (X ¢) (18)
relations of Stokes operators are directly scaled by the carrier Qb

polarization. The carrier field polarization consists of two Vas3 = a?(cosh)?Vy, + aZ(sin )2V},
amplitudes(the horizontal and vertical components well

as one relative phase angle. Polarization fluctuations will +2a\2,sin0cosa<6x,ﬁ£5xg’c>, (19

only be teleported properly provided the input polarization is

known and the output polarization is set to be identical. Awhere the variance‘e!ﬁ,vzvci+v§ are the sum of classical
complete polarization teleporter would therefore include thesignal and quantum fluctuation variances. The classical cross
twin teleporters plus an optical setup presented in Fig. 4 to

shift an arbitrary carrier field polarization to a set polariza-

tion and then, after the teleportation protocol, return it to its !This can be done without loss of generality so long as the setup
original polarization. in Fig. 4 is utilized.
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PBS
AVSEEEEEENENENENEEEEEEEEEEEEEEEEEEY
a quadrature teleporter I ]
Polarized Horizontal :lIlIlIlIlllllllllllllllllllllllllg
Signal IN | Beam = 1
PBS €
Det sQ3 £ 1
> S
Vertical 5 J
Beam LS.
9+ Polarized
Signal OUT 1

SQD-Tele

FIG. 5. SQD-teleporter experimental setup consisting of a direct
detection SQD measurement and a quadrature teleporter circuit.
Det, standard amplitude detectof;, amplitude modulatorg, ,
amplitude modulator gain, and PBS, polarizing beam splitter.

correlation terms in Eq97)—(9) have now reduced so that
only correlations between the phase and amplitude quadra- g 6. The SQD-teleporteF-V plot using only three quadra-

tures of the horizontal input mode remain. _ tures of interest, with/gs=Vso (@) With coherent stategb) With
_ Th(_e phase anglé has no effec_t on the classical polariza- 3-gB squeezing \s0=0.5), and(c) with 10-dB squeezing\(sq
tion sinceay =0, therefore making the angle between =0.1). (d) Locus of unity gain points from no squeezing to perfect

and ey meaningless. It does nevertheless appear in the exqueezing.
pressions for the variances of the Stokes operators, although

the angle is not referenced to a carrier field. The situation '%ically polarized input states. An arbitrary input state can be

analogous to the case of a squeezed vacuum state where '}) ated using a variable half- and quarter-wave plate arrange-
guadrature angle, although lacking reference to a carrier ant 9 q r-wave p Y
plitude, affects the variance ment and feedback loops, such as that in Fig. 4, to ensure all

The uncertainty relations in Eq2) are strongly affected ©f the light power is in the SQD part of the system and its

polarization is vertical. Once the protocol is complete, it can

be rotated back to its original polarization.

The amplitude squeezing of SQ3 enables, in theory, a per-

by choosing(a,)=0 since this also impliegS,)=(S;)
=0. From Eq.(2), the only uncertainty remaining is that

betweenS, and S;. Quantum teleportation of these two fect reproduction of the single amplitude quadrature fluctua-

quantities can be achieved via a single entangled Saian tion 55(\7 . The complete polarization teleportation system

the other hand commutes wif, and S; and can be deter- 4,y yses only an entangled pair and one additional squeezed

mined without disturbing them, therefore its reconstructionygym,

céoes 1n"—_:)t redqtjllée a second entanglgledI pcz;ur. In (l)tf}er wgrds, An interesting characteristic of the measurement of the
gs.(15) and(16) are seen to completely decouple from 9 vertical polarization is that the signal transfer is best in the

. - - £.SQD
(14). The vertical amplitude fluctuations 65;°° can there- |imit of infinite gain. On the other hand, the conditional vari-
fore be reproduced by a single quadrat(®QD) measure-  gnce of the vertical polarization cannot be improved as there

ment[19]. _ . , o are no correlations between the detected beam and the
The schematic of this SQD protocol is shown in Fig. 5'squeezed reconstruction beam.

Vertically polarized light is incident at the input polarizing It is possible, however, to represent the entire system on a

beam splitter. The bright vertical light mode is reflected andSingle TV diagram with Tq=T,ﬁ+TQ+T\7 and Vg,

detected. The resulting photocurrent is used to control the = = ~ N ) n
amplitude modulation of a vertically polarized squeezed™ 3(Vevnt Veunt Veyy). Since the phase quadratuik,, is

beam SQ3. The amplitude quadrature of the modulated bealff€levant to the polarization description of the stéls.

SQ3 will, in the limit of ideal squeezing and appropriate (17)—(19)], it is reasonable not to include it in tHeV analy-

feed-forward gain, be identical X the amplitude sis, which relates to the polarization information transferred
l \VAR]

. . . . during the teleportation process.

quadrature o_f the ygégcallyfolgrlze_d light at the input to the For simplicity, the choice oVsqs=Vsg is made for the
teleporter. SincedS; "« 6Xy this single quadrature feed- remainder of this section. Figure 6 shows a resulting three
forward loop is enough to telepostS;. The quadrature tele- quadrature X, , Xy ,Xy/) T-V plot. For ideal squeezing of
portation protocol, using an EPR pair, transfers the fluctuag|| three beams the minimum conditional varianég—0,
tions of 6S3°° and 6S3°° onto the horizontally polarized and the maximum signal transfer coefficidit—3, can still
output beam EPR[16]. The vertical and horizontal output be reached.
modes are then combined via a second polarizing beam split- In the SQD scheme, beam SQ3 needs to be amplitude
ter and the polarization information is recreated. It is impor-squeezed in order to reduce any noise in the signal quadra-
tant to ensure that the horizontal output ma@#PR1) has ture. As a result, the phase quadrature becomes very noisy as
much less power than the vertical output beam SQ3, in ordet/Vgqo3—. The unfavorable consequence of this is that the
to preserve the input polarization. fidelity of the scheme is found to be vanishingly small. The

The above scheme is not necessarily limited only to verfidelity equation(10) reduces to
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H quadrature teleporter —_—
SaEEEEEsEEsEEEEEsssEEEsssnnnnnnnnnd

val SQD-teleporter scheme i Signal IN

Squeezed g
2 bright beam
3 (Vsaa)
(i
8% Signal OUT
Vacuuml/"
noise *
(Vu)

T I FIG. 8. Biased entanglement teleporter experimental setup.
Variance of the squeezéd quadrature ' the yariable transmittiyity beam sp_litFe_r for biased (_entanglement of
the inputs;e,, the variable transmittivity beam splitter for detec-
FIG. 7. The fidelity curves fofa) the twin teleporter systengp) ~ tion; D.. . amplitude/phase homodyne detectian,—, amplitude/
the SQD-teleporter system with'sos=Vsg, and (c) the SQD-  phase modulatorsy. , amplitude/phase feed-forward gains; and

teleporter system with no squeezing on the SQ3 beam. PBS, polarizing beam splitter.
2 input state at the second beam splittabelede,). The abil-
Fsqp= (20) ity to choose the transmittivity of this beam splitter allows
(1+Vso) \/(VSQ3+2) 1 measurements of t_he amplitude quadrature of the vertical
Vsqs signal, which is equivalent t6S;, or the phase quadrature of

In fact, the maximum fidelity of the replicated quantum statethe vertical input, which is not represented on the Poincare
' Y P q phere, or to alternatively measure any combination of the

is F=+/(2/3), attained when there is no SQ3 squeezing at al wo. The signal is then detected and fed forward to the

and Vgo—0. Figure 7 shows two possible fidelity curves, : , . :
with and without SQ3 beam squeezing. The SQD-teIeportemOdUIatorS' We term this configuration biased entanglement

curve exceeds the results of the twin teleporters for alfeleportanon(BET) (see Fig. & .
squeezing levels up to 80%, even though less resources are.The BET schemg can.be thqught of a modification of the
used. This is because there are fewer measurement penalti)(‘é‘gn teleporters, which tries to limit the resources fro_m.four_
in the three beam case. When performing classical teleport -”ght’ squeezed beams to only three. Ope EPR pair IS still
tion (i.e., teleportation with coherent states in place of enmaximally entangled and telgport.s the ho'rlzontal fluct.uatlor)s
tanglement of all four quadratures, each quadrature recon2S before; hgwever, the vertical information on the signal is
struction will degrade the fidelity. Classical teleportation ofteleported with one of the squeezed beams turned off. Fur-
only three quadratures means the fourth quadrature is néfer, the SQD-teleporter scheme from Sec. V is a special case
degraded and therefore does not contribute to reducing th@f the BET scheme and can be recovered by setting 1
fidelity. The classical limit in the case of the SQD protocol ande,=0.

may then be redefined by substitutigo=Vsqs=1 in Eq. The fidelity of a BET setup surpasses the /(2/3) di-
(20), giving F=1/\/6. rect detection limit. To do this, various parameters of the
system can be optimized according to the value of squeezing
VI. BIASED ENTANGLEMENT TELEPORTER SCHEME injected,V§Q3. The beam splitter transmittivities; and e,

can be changed to optimize E(.0). The amplitude modu-

It is somewhat disappointing that our SQD-teleporter . : . . )
scheme described in Sec. V performs worse in terms of fi[ator gaing, which relates to the vertically polarized signal

delity when the SQ3 beam is squeefEiys. Ab) and 7c)]. qugdrature needs to be kept at unity. The pha_se mo_dulator
In this section we present an alternative polarization telepord@n 9- . however, relates to the quadrature with no infor-
tation scheme that also uses three squeezed beams but d§Ation. and hence is optimized to minimize the reconstruc-
perform better than the SQD-teleporter scheme in terms dfon noise. Both gains are functions ef, ¢,, and the
fidelity. squeezing/gq3. The polarity ofg, and the quadrature being
Here, we use the third squeezed beam to generate efqueezedeitherVgqs or Viog), suggest four possible oper-
tanglement of the vertical polarization. A single squeezedting regimes. Our detailed analysis shows that three of these
beam and a vacuum mode are combined on a beam splitté@gimes have maximum fidelity surpassing that of the SQD-
(labelede,), the outputs of this beam splitter then exhibit teleporter scheme. For the remainder of this section we will
biased entanglemeritl5]. That is, strong correlations are only discuss the best regime, which was obtained with feed-
evident between the squeezed quadratures of the two outpuferward gain ofg, >0, and with the input phase squeezed
but only shot-noise limited correlations exist between the(Vggo3<1).
beams for the orthogonal quadratuf&s]. One of the biased The improvement in the fidelity of the system occurs be-
entangled beams is then mixed with the vertical mode of theause at the extremes of squeezingand e,—0, so that
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As expected, unity fidelity is never reached, however for all
input squeezing levels the BET scheme is better than the
SQD-teleporter scheme. Furthermore, the BET scheme can
surpass the performance of the twin teleporters scheme in-
troduced in Sec. IV at squeezing values within experimental
reach. This scheme preserves the quantum nature of the com-
plete state well but, as will be shown shortly, when informa-
tion transfer is considered it is inferior to that of the SQD-
teleporter scheme.

The evaluation of the transfer coefficient and conditional
variance is also dependent on the optimization of gain, beam
o3 | splitter ratios, and available squeezing parameters. However,

P the parameters optimized for fidelity do not necessarily cor-
1 09 08 07 06 05 04 03 02 01 0 . . .

Variance of the squeezed quadrature (Vsq;=Vs,) respond to the best-V result. This occurs because fidelity
weights every quadrature or Stokes operator equally, whereas
T-V analysis concentrates on the information containing

teleporter schemeh) the optimum BET scheme, arid) the opti- vanaple_sSl, 2. and$3. Th? BET system then needs to be
mized twin teleporters. The schemes are all equivalent at Iom}’eOpt'm'Zed and a_gf"‘m_' various regimes are reaqhed depend-
squeezing parameter. ing on the transmittivities oé; ande,. Our analysis shows
that T, and V{,, as a function of feed-forward gain are
optimized if the BET arrangement is set to recover the SQD-
almost all of the signal in the BET scheme is directed to theeleporter scheme of Fig. 6, by settimg=1 ande,=0.
amplitude detectob , while most of the phase quadrature Here the function T\j=(4gi)/(4gi+vgq)ﬁ1, as g.
squeezing goes directly to the phase deteddor. The .o wjth greater squeezing, the transfer coefficient ap-

modulation is then imprinted onto a nearly quantum nois&roaches unity more rapidly ag. increases. The amplitude
limited beam. Some correlations exist between the detecte&luadrature conditional variance is independent of gain

phase fluctuations and the fluctuations of the output beam,+ —V¢., and the minimum of zero occurs only in the
which enable a cancellation of the output phase quadraturlec".;s’ ; SQ? ¢ .

variance down to half the original shot noise level. The sig-Irnl of periect squeezing. _— .

nal (amplitude quadrature only pays the measurement pen- Itis clea_r from the above f|QeI|ty and-v an.alygls that
alty by coupling to a single unit of vacuum noise. For the_successful |nfc_>rm§t|o_n transfer is ngt ljgcessarlly I|n!<ed to an
biased entanglement part of the BET setup, pictured on thinProvement in fidelity. When optimizing the fidelity, the
lower part of Fig. 8, the expression for fidelity in terms of the BET protocol is weighted in favor of better state overlap.

o o
) o
T T

e
3
T

Fidelity

FIG. 9. The comparison of the fidelity curves f@ the SQD-

beam splitter ratios is given by This means improving the output phase noise of the SQ3
beam. Reducing this phase noise, however, means sacrificing

A signal and reducing the signal transfer coefficient. The deci-

Fma —T—, (21 sion of which characterization method to use should be made

VBe dependening on the particular quantum information protocol

where A, B, andC are given by for which the teleportation scheme is to be used.

A=2\(e2—1)[£2(Vegs—1)(e1— 1) —&1(Vegs—1)— gz) VIl. OPTIMIZED TWIN TELEPORTER SCHEME
The fidelity curve as a function of squeezing for the twin
B=2¢e,(Vigs—1)(e1—1)—&1(Vos—1)—2, (23) teleporters in Fig. @) could also be optimized for the am-
plitude coded input signal considered in this paper. This can

C=e,[3— 281+ Vgpy281—1)] be achieved in a manner similar to the biased entanglement
teleportation optimization, by adjusting the beam splitter
+2(Vos— 1)Vea(1—ep)e1(1—g1) transmittivities for each squeezing value. When all four in-
+ puts are equally squeeze¥{y=Vsq=V,) and the pairs
—&1(Vsge~ 1) =3, 24 are 90° out of phase for best results, the fidelity is given by

and we takeVgos= 1N g0, With Vgos<1.

Figure 9b) shows a plot of the product of E¢21) and
F= 1/(V§Q+ 1), the fidelity of the quadrature teleporter with Fyean= D
two equally amplitude squeezed beam$§(§< 1). It illus- 80 JMN’
trates the fidelity of the optimum BET scheme by varying
transmittivitiese, and €, as a function of squeezing. The
maximum reached at ideal squeezingAs 2.2/3~0.943.  whereD, M, andA are given by

(25
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D=2W§Q3(82— Dea(Végs— D[ Vsoae1— 1) +e1]+ (Vega(1—&1) +&4], (26)

M=(1+Vodlea(Vigs— 1 (1—2e1) +&1(Vegz— 1) — Vol

N=8,[1-2Vio5— 281~ (Vi (1= 281) 1+ [ 1~ (Viga)*lle1—2Vea(1-er)e1(1—&1) ]+ 2Vinat (Viga)?.  (27)

Again, several regimes emerge; however, only the optimuncan be considered to be a two-mode coherent ktatd ay).
regime for fidelity is considered here. This is shown in Fig.Due to our choice of basis, both figures of merit quantify the
9(c). The two optimized systems of BHFig. 9b)] and twin  transfer of quantum information on the horizontal mode;
teleporters show comparable results at lower values of theowever, they differ in how they treat the vertical mode. The
squeezing parameter, even though the twin teleporter réF-V analysis considers the vertical mode to be a quantum

quires more resources. limited classical channel. That is, it only considers the am-
plitude quadrature of the vertical mode, since the phase
VIIl. CONCLUSION quadrature plays no role in determining the polarization of

) ) ] the composite field. On the other hand the fidelity analysis

We have investigated schemes for the teleportation of posgnsiders the vertical mode to carry quantum information on

larization states carried by bright optical beams. We havgy restricted domain, with no classical signal present on its
shown that simply performing quadrature teleportation onypase quadrature 5K, ,=0). The appropriate figure of

the horizontal and vertical constituent modes separately i erit. and thus the m'chst efficient teleportation protocol to

not optimal in terms of squeezing resources with respect t9,o i’n a particular circumstance, depends on the way in

both the T-V and. fi_delity figures Qf merit. We introd_uce which the quantum information is being encoded.
schemes that optimize the squeezing resources required for

polarization teleportation with respect to each figure of merit.
We find that the optimization is different depending on the
figure of merit being used. This work was supported by the Australian Research

The difference in optimization of the two figures of merit Council and is part of the EU QIPC Project No. IST-1999-
can be understood in the following way. When small signalsl3071 (QUICQOV). We are grateful to N. Treps and H.-A.
are applied to the polarization sidebands of a light field, theyBachor for useful discussion.
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