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Teleportation of continuous-variable polarization states
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This paper discusses methods for the optical teleportation of continuous-variable polarization states. We
show that using two pairs of entangled beams, generated using four squeezed beams, perfect teleportation of
optical polarization states can be performed. Restricting ourselves to three squeezed beams, we demonstrate
that polarization state teleportation can still exceed the classical limit. The three-squeezer schemes involve
either the use of quantum nondemolition measurement or biased entanglement generated from a single
squeezed beam. We analyze the efficacies of these schemes in terms of fidelity, signal transfer coefficients, and
quantum correlations.
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I. INTRODUCTION

Quantum teleportation@1# is an important operation fo
the transmission and manipulation of quantum states and
formation. It has been experimentally demonstrated in b
discrete@2# and continuous-variable@3,4# regimes. To date
continuous-variable teleportation protocols have been
formed solely on the quadrature amplitudes of optical fiel
Recently there has been growing interest in continuo
variable polarization states in the context of quantum inf
mation schemes. Experimental demonstrations of polar
tion squeezing@5–9# and entanglement@10# have been
performed. A practical advantage of polarization states w
applied to quantum information networks is that a netwo
wide frequency reference is not required@11#. Furthermore,
quantum communication networks are expected to req
the ability to transfer quantum information between opti
and atomic states. This has been experimentally dem
strated between optical polarization states and atomic
ensembles@8#. It is then natural to ask how quantum telepo
tation can be optimally implemented on continuous-varia
polarization states.

This paper is arranged in the following way. Section
reviews the use of Stokes operators to characterize the q
tum properties of polarized light. In Sec. III we discuss tw
commonly used teleportation figures of merit in the cont
of quadrature teleportation. Section IV proposes a straig
forward generalization of quadrature teleportation to po
ization teleportation, and generalizes the teleportation figu
of merit to polarization states. In Secs. V, VI, and VII mod
fications of this protocol, which optimize these figures
merit are discussed. We summarize and conclude in
VIII.

II. BACKGROUND

In classical optics the polarization state of light can
described using Stokes parameters, where an arbitrary p
ization state is decomposed into three components: lin
~vertical/horizontal!, diagonal (145°/245°), and circular
~left/right handed! @12#. This vector representation can b
1050-2947/2003/68~5!/052308~8!/$20.00 68 0523
n-
th

r-
.

s-
-
a-

n
-

re
l
n-
in

e

n-

t
t-

r-
es

f
c.

ar-
ar

elegantly visualized on a Poincare´ sphere shown in Fig. 1
The orientation of the Stokes vector describes the polar
tion state of the laser beam withŜ1 giving the intensity dif-
ference between the horizontally and vertically polariz
components of the beam andŜ2 giving the intensity differ-
ence between the diagonally and antidiagonally polari
components. The azimuthal deviation from theŜ1-Ŝ2 plane
towards theŜ3 axis indicates the ellipticity of the polariza
tion state. By drawing an analogy with classical Stokes
rameters a set of Stokes operators can be defined, provi
a convenient description of the quantum polarization prop
ties of light @13,14#:

Ŝ05âH
† âH1âV

† âV5n̂H1n̂V ,

Ŝ15âH
† âH2âV

† âV5n̂H2n̂V ,
~1!

Ŝ25âH
† âVeiu1âV

† âHe2 iu5n̂D2n̂D̄ ,

Ŝ35 i âV
† âHe2 iu2 i âH

† âVeiu5n̂R2n̂L .

Here the polarization mode is constructed in terms of an
hilation â and creationâ† operators of the horizontalH and
vertical V constituent modes, with a phaseu between them.
These operators can be written asâ(t)5a1dâ(t), wherea

is the classical amplitude anddâ(t) is the operator contain
ing the quantum fluctuations with@dâ(t),dâ†(t)#51 and

^dâ(t)&50. We will assume that uau5^uâ(t)u&
@^udâ(t)u2&, allowing a linearization of the operator equ
tions.

Ŝ0 commutes with the other Stokes operators and its
pectation value is proportional to the total intensity of t
light beam.Ŝ1 , Ŝ2, andŜ3, however, obey a coupled set o
commutation relations and are isomorphic to the Pauli m
trices: @Ŝl ,Ŝm#52iŜn , where$ l ,m,n%5$1,2,3% and are cy-
clically interchangeable. This says that simultaneous m
surements of these Stokes operators are, in gen
impossible and their variances are restricted by
©2003 The American Physical Society08-1
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VlVm>u^Ŝn&u2. ~2!

Here,Vl5^(Ŝl)
2&2^Ŝl&

2 is the variance of each Stokes o
erator.

The length of the quantum Stokes vector in Fig. 1
A^S0

2&12^S0&, which always exceeds its classical count
part. The coupled uncertainty relations of the Stokes v
ances in Eq.~2! are exhibited further in the appearance o
three-dimensional noise ‘‘ball,’’ superimposed on the Po
carésurface, at the end of the Stokes vector. In the cas
coherent polarization states this ball is spherical.

The field operatorsâ(t),â†(t) are now expanded in term
of their dc and fluctuating components. Keeping only t
first-order fluctuation terms, Eqs.~1! yield linearized equa-
tions for the fluctuations in the Stokes operators:

dŜ05aHdXH
11aVdXV

1 , ~3!

FIG. 1. The quantum Poincare´ sphere. In the classical caseS0,
the total photon number is the radius of the sphere, wherea
quantum picture the radius takes a larger value ofAS0

212S0 due to
the quantum uncertainty@11#. The presence of the uncertainty rel
tions @Eq. ~2!# manifests itself in the quantum noise ‘‘ball’’ as ind
cated.
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dŜ15aHdXH
12aVdXV

1 , ~4!

dŜ25aH~dXV
2sinu1dXV

1cosu!

1aV~dXH
1cosu2dXH

2sinu!, ~5!

dŜ35aH~dXV
1sinu2dXV

2cosu!

1aV~dXH
2cosu1dXH

1sinu!, ~6!

whereX̂1(2) are the usual amplitude~phase! quadrature op-
erators, defined asdX̂15(dâ1dâ†) and dX̂25 i (dâ†

2dâ). It can be seen from Eqs.~4!–~6! that the linearized
Stokes operators are a linear combination of the quadra
operators for the two modes.

In this paper we are interested in fluctuations at a f
quencyv around the optical carrier frequency. The Four
transform of the time domain Stokes operators will be tak
from now on, with all the operators being in the frequen
domain. We include the signal at frequencyv, encoded on
polarization modulation as a classical fluctuations term, m
ing â5ac1dâq1dac . Unlike quantum fluctuationsdâq ,
the introduceddac term is purely classical with@dac ,dac

†#

50. Theâ operator expansions substituted into Stokes eq
tions ~1! yield linearized Eqs.~4!–~6! in frequency domain
wheredX̂65dXc

61dX̂q
6 . Hence there are two independe

sources of fluctuations, the classical signalc and the quan-
tum noiseq. The variancesV(dŜl) of the Stokes operator
may be calculated from Eqs.~4!–~6!:

VS1
5aH

2 ~VH,c
1 1VH,q

1 !1aV
2~VV,c

1 1VV,q
1 !

12aHaV^dXV,c
1 dXH,c

1 &, ~7!

in
VS2
5aH

2 ~cosu!2~VV,c
1 1VV,q

1 !1aV
2~cosu!2~VH,c

1 1VH,q
1 !1aH

2 ~sinu!2~VV,c
2 1VV,q

2 !1aV
2~sinu!2~VH,c

2 1VH,q
2 !

12aHaVsinu cosu^dXV,c
2 dXH,c

1 &12aHaV~cosu!2^dXV,c
1 dXH,c

1 &12aH
2 sinu cosu^dXV,c

1 dXV,c
2 &

22aHaVsinu cosu^dXV,c
1 dXH,c

2 &22aHaV~sin u!2^dXV,c
2 dXH,c

2 &22aV
2sinu cosu^dXH,c

1 dXH,c
2 &, ~8!

VS3
5aH

2 ~cosu!2~VV,c
2 1VV,q

2 !1aV
2~cosu!2~VH,c

2 1VH,q
2 !1aH

2 ~sin u!2~VV,c
1 1VV,q

1 !1aV
2~sin u!2~VH,c

1 1VH,q
1 !

12aHaVsinu cosu^dXV,c
1 dXH,c

2 &12aHaV~sin u!2^dXV,c
1 dXH,c

1 &12aV
2sinu cosu^dXH,c

1 dXH,c
2 &

22aHaVsinu cosu^dXV,c
2 dXH,c

1 &22aHaV~cosu!2^dXV,c
2 dXH,c

2 &22aH
2 sinu cosu^dXV,c

1 dXH,c
2 &. ~9!
t the

on
for
The variance terms with subscript ‘‘c’’ represent a delier-
ately applied signal, distinct from the quantum noise ter
with subscript ‘‘q. ’’ In general, classical modulation correla
tions can exist and additional cross terms, such
^dXH,c

1 dXV,c
1 &, may appear. These are included for comple

ness, although they are not considered in the modeling
follows in later sections. In the following sections, we w
assume that the light beams are pure states with Gaus
s

s
-
at

ian

statistics. Unless squeezed, the quantum terms will be a
standard quantum limit andVH/V,q

6 51.

III. FIGURES OF MERIT FOR QUADRATURE
TELEPORTATION

The figures of merit that we consider here for polarizati
teleportation are generalizations of those previously used
8-2
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quadrature teleportation, namely, theT-V measure and fidel
ity @4#. In this section, we present the relevant definitions
quadrature teleportation. The extension of the paramete
then presented in later sections.

Fidelity is one way to quantify the success of a quant
state reconstruction for many quantum protocols. It is giv
by the overlap integral of the initial and final wave function
F5 z^c inur̂outuc in& z2, whereuc in& is the input state andr̂out is
the density operator of the output. For Gaussian input st
the statistics of a laser beam are fully described by the
two statistical moments: the mean and the variance. W
unity gain is assumed for the reconstruction, that is, the o
put state has the same classical amplitude as the input,
when the input states are coherent, i.e.,Vin

651, the expres-
sion for fidelity is given by

F5
2

A~Vout
1 11!~Vout

2 11!
, ~10!

where Vout
6 are the output quadrature variances. Variatio

away from unity gain typically lead to an exponentially d
creasing fidelity value@4#.

The case ofF50 implies that the input and the output a
orthogonal and bear no resemblance to each other, whiF
51 suggests perfect reconstruction of the input. In the
sence of entanglement, the classical fidelity limit for t
quadrature teleportation of a coherent state isF< 1

2 @3#.
Another useful way of quantifying teleportation is via

T-V diagram@16#. Here two parameters are considered. T
first parameter is the signal transfer coefficientT6, which is
the ratio of the signal-to-noise ratioR of the output to that of
the input for a given quadrature,

Tq5T11T25
R out

1

R in
1

1
R out

2

R in
2 . ~11!

When no information is recovered there is no signal, he
Tq50. For ideal teleportation, the transfer coefficient h
R in

65R out
6 for both quadratures, as the vacuum noise pr

lem is circumvented. This gives the ideal two quadrat
limit of Tq

max52. The classical limit at unity gain is given b
Tq

classical5 2
3 .

The second parameter of theT-V diagram is the condi-
tional variance,Vcv5

1
2 (Vcv

11Vcv
2), which is a measure of the

correlation between the input and the output quadratures,
is defined as

Vcv
65Vout

6 2
^udX̂in

6dX̂out
6 u2&

Vin
6

. ~12!

For Gaussian input states, it can be shown thatVcv
65Vout

6 (1
2T6), whereVout is the output of the system with no sign
input @16#. The conditional variance is a measure of quant
correlation between the input and the output states an
reflects the amount of noise added to the output state by
teleporter. Ideal quadrature teleportation replicates the in
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exactly, giving the lower bound ofVcv
min50. At unity gain the

classical limit is again the double vacuum noise pena
HenceVcv

classic52.
The Tq andVcv parameters can be plotted on aT-V dia-

gram as a function of the teleportation feed-forward gai
Once evaluated, both Eqs.~11! and~12! become independen
of the input signal amplitudes and Eq.~12! is also indepen-
dent of the input noise.

Note that a more stringent teleportation criteria is t
passing of the no-cloning limit@17#. At unity gain this cor-
responds to a fidelity of 2/3 or equivalently to entering t
lower right-hand quadrant of theT-V diagram. For simplicity
we consider here only the two criteria described above.

IV. POLARIZATION STATE TELEPORTATION
WITH TWIN TELEPORTERS

We note from Eqs.~7!–~9! that polarization states can b
completely described by the quadrature amplitudes of b
the horizontal and vertical polarization modes. The obvio
way to teleport an input polarization state is, therefore,
decompose the input beam into a horizontally and a ve
cally polarized beam via a polarizing beam splitter as sho
in Fig. 2 @18#. Two standard continuous-variable quadratu
amplitude teleporters, one for each polarization mode, can
used to teleport the orthogonally polarized beams The c
plete task thus requires four squeezed beams for the gen
tion of two pairs of quadrature entanglement. Finally, t
teleported states are recombined at the receiving station
ing another polarizing beamsplitter.

The teleportation fidelity for this system is shown in Fi
7~a!. Assuming that all four beams are equally squeezed,
expression for the fidelity of the twin teleporters scheme
comes

F5
1

~VSQ11!2
, ~13!

_
+

λ+

λ-

Horizontal

Signal

PBS

PBS

D-

D+
EPR

1

E
P
R
2

Vertical

Signal

quadrature teleporter

Polarized

Signal IN

Polarized

Signal OUT

quadrature teleporter

FIG. 2. Polarization state teleportation scheme with twin te
porters. EPR1,2, two entangled beams;D6 , amplitude/phase ho-
modyne detectors;1/2, amplitude/phase modulators;l6 ,
amplitude/phase feed-forward gains; and PBS, polarizing be
splitter. A standard quadrature teleporter is shown in the inset.
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whereVSQ is the variance of the squeezed quadratures of
beams used to produce the entanglement. Since the fide
for the vertical and horizontal modes are independent,
fidelity is calculated from a four-dimensional overlap int
gral between the input and output states. Equation~13! is
derived simply by squaring the quadrature teleporter fide
We note that the classical limit of this polarization telepor
is F< 1

4 and ideal polarization teleportation has fidelity 1.
The results ofT-V analysis for this scheme are illustrate

in Fig. 3. Similar to the quadrature teleporter, the conditio
variance is now extended toVcv5

1
4 (Vcv,H

1 1Vcv,H
2 1Vcv,V

1

1Vcv,V
2 ) and the total signal transfer coefficient is now giv

by Tq5TH
11TH

21TV
11TV

2 . For ideal squeezing, we obtai
Vcv→0 andTq→4.

So far, we have chosen to ignore the classical amplit
of our input state. Although the fluctuations in the input p
larization are teleported by the twin teleporters, the polari
tion of the input carrier field is not teleported. This is, at fi
thought, analogous to quadrature teleportation where the
rier amplitude, or the optical intensity, of the input beam
assumed to be unimportant in the reconstruction of the qu
tum state at the sideband frequency. Besides, it is relati
trivial to replicate the input intensity at the output. Intere
ingly, however, Eqs.~7!–~9! suggest that the polarization o
the input carrier field cannot be ignored in the teleportat
of polarization states. This is due to the fact that uncerta
relations of Stokes operators are directly scaled by the ca
polarization. The carrier field polarization consists of tw
amplitudes~the horizontal and vertical components! as well
as one relative phase angle. Polarization fluctuations
only be teleported properly provided the input polarization
known and the output polarization is set to be identical
complete polarization teleporter would therefore include
twin teleporters plus an optical setup presented in Fig. 4
shift an arbitrary carrier field polarization to a set polariz
tion and then, after the teleportation protocol, return it to
original polarization.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Tq

V
cv

(b)

(a)

(c)

(d)

FIG. 3. T-V plot of the teleportation of polarization state wit
twin teleporters~a! with coherent states,~b! with 3-dB squeezing
(VSQ50.5), and~c! with 10-dB squeezing (VSQ50.1) as a function
of feed-forward gain.~d! Locus of unity gain points from no
squeezing to perfect squeezing.
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V. SQD-TELEPORTER SCHEME

Inspection of the Stokes operators shows that sinceŜ0

commutes withŜ1 , Ŝ2, andŜ3, it can be measured with no
penalty on the remaining three operators. For quadra
teleportation two squeezed beams enable teleportation of
variablesdX̂2 anddX̂1. This raises the question of whethe
polarization teleportation could be achieved using only th
squeezed beams~for Ŝ1 , Ŝ2, and Ŝ3) rather than the four
utilized in the previous scheme.1 Choosing the polarization
of the carrier beam to be vertical causes theaH terms in Eqs.
~4!–~6! to vanish, giving

dŜ1
SQD52aVdXV

1 , ~14!

dŜ2
SQD5aV~dXH

1cosu2dXH
2sin u!, ~15!

dŜ3
SQD5aV~dXH

2cosu1dXH
1sin u!. ~16!

The linearized variances for the vertical carrier Stok
fluctuations from Eqs.~7!–~9! now simplify to

VdŜ1

SQD
5aV

2VV
1 , ~17!

VdŜ2

SQD
5aV

2~cosu!2VH
11aV

2~sin u!2VH
2

22aV
2sin ucosu^dXH,c

1 dXH,c
2 &, ~18!

VdŜ3

SQD
5aV

2~cosu!2VH
21aV

2~sinu!2VH
1

12aV
2sinu cosu^dXH,c

1 dXH,c
2 &, ~19!

where the variancesVH/V
6 5Vc

61Vq
6 are the sum of classica

signal and quantum fluctuation variances. The classical c

1This can be done without loss of generality so long as the se
in Fig. 4 is utilized.

R

L

PBS

_ _

PBS

V

H

Arbitrary

polarization

Vertical

polarization

50/50ε

λ
4

λ
4

λ
2

λ
4

λ
2

Teleportation

Protocol

Arbitrary

polarization

FIG. 4. Classical control system for measuring and controll
the polarization of carrier field. This figure demonstrates that in
polarization state can be measured and fed forward to control
polarization state of another beam.«, beam splitter with low trans-
mittivity; H/V, horizontal/vertical polarization detection;R/L,
right/left circular polarization detection; PBS, polarizing beam sp
ter; l/2, half-wave plate; andl/4, quarter-wave plate. The vertica
output is subsequently teleported by a chosen protocol and retu
back to its original polarization at the receiving station.
8-4



t
d

a-

e
u

n
re
am

t
o

-
io
rd
q

5
g
n
th
e
ea
te

he
-

-
ua

t
p
or

rd

e

be
ge-

e all
its
an

per-
ua-

m
ezed

the
the
ri-
ere
the

n a

ed

ree
f

ude
dra-
y as

the
he

re
rcu

-

ct
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correlation terms in Eqs.~7!–~9! have now reduced so tha
only correlations between the phase and amplitude qua
tures of the horizontal input mode remain.

The phase angleu has no effect on the classical polariz
tion sinceaH50, therefore making the angle betweenaV
and aH meaningless. It does nevertheless appear in the
pressions for the variances of the Stokes operators, altho
the angle is not referenced to a carrier field. The situatio
analogous to the case of a squeezed vacuum state whe
quadrature angle, although lacking reference to a carrier
plitude, affects the variance.

The uncertainty relations in Eq.~2! are strongly affected
by choosing ^âH&50 since this also implieŝ Ŝ2&5^Ŝ3&
50. From Eq.~2!, the only uncertainty remaining is tha
betweenŜ2 and Ŝ3. Quantum teleportation of these tw
quantities can be achieved via a single entangled pair.Ŝ1 on
the other hand commutes withŜ2 and Ŝ3 and can be deter
mined without disturbing them, therefore its reconstruct
does not require a second entangled pair. In other wo
Eqs.~15! and~16! are seen to completely decouple from E
~14!. The vertical amplitude fluctuations ofdŜ1

SQD can there-
fore be reproduced by a single quadrature~SQD! measure-
ment @19#.

The schematic of this SQD protocol is shown in Fig.
Vertically polarized light is incident at the input polarizin
beam splitter. The bright vertical light mode is reflected a
detected. The resulting photocurrent is used to control
amplitude modulation of a vertically polarized squeez
beam SQ3. The amplitude quadrature of the modulated b
SQ3 will, in the limit of ideal squeezing and appropria
feed-forward gain, be identical todX̂V

1 , the amplitude
quadrature of the vertically polarized light at the input to t
teleporter. SincedŜ1

SQD}dX̂V
1 this single quadrature feed

forward loop is enough to teleportdŜ1. The quadrature tele
portation protocol, using an EPR pair, transfers the fluct
tions of dŜ2

SQD and dŜ3
SQD onto the horizontally polarized

output beam EPR1@16#. The vertical and horizontal outpu
modes are then combined via a second polarizing beam s
ter and the polarization information is recreated. It is imp
tant to ensure that the horizontal output mode~EPR1! has
much less power than the vertical output beam SQ3, in o
to preserve the input polarization.

The above scheme is not necessarily limited only to v

+

PBS

PBSSQ3

g+

Det

Vertical

Beam

Horizontal

Beam

quadrature teleporter

Polarized

Signal IN

Polarized

Signal OUT

FIG. 5. SQD-teleporter experimental setup consisting of a di
detection SQD measurement and a quadrature teleporter ci
Det, standard amplitude detector;1, amplitude modulator,g1 ,
amplitude modulator gain, and PBS, polarizing beam splitter.
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tically polarized input states. An arbitrary input state can
rotated using a variable half- and quarter-wave plate arran
ment and feedback loops, such as that in Fig. 4, to ensur
of the light power is in the SQD part of the system and
polarization is vertical. Once the protocol is complete, it c
be rotated back to its original polarization.

The amplitude squeezing of SQ3 enables, in theory, a
fect reproduction of the single amplitude quadrature fluct

tion dX̂V
1 . The complete polarization teleportation syste

now uses only an entangled pair and one additional sque
beam.

An interesting characteristic of the measurement of
vertical polarization is that the signal transfer is best in
limit of infinite gain. On the other hand, the conditional va
ance of the vertical polarization cannot be improved as th
are no correlations between the detected beam and
squeezed reconstruction beam.

It is possible, however, to represent the entire system o
single T-V diagram with Tq5TH

11TH
21TV

1 and Vcv

5 1
3 (Vcv,H

1 1Vcv,H
2 1Vcv,V

1 ). Since the phase quadraturedX̂V
2 is

irrelevant to the polarization description of the state@Eqs.
~17!–~19!#, it is reasonable not to include it in theT-V analy-
sis, which relates to the polarization information transferr
during the teleportation process.

For simplicity, the choice ofVSQ35VSQ is made for the
remainder of this section. Figure 6 shows a resulting th
quadrature (XH

1 ,XH
2 ,XV

1) T-V plot. For ideal squeezing o
all three beams the minimum conditional varianceVcv→0,
and the maximum signal transfer coefficientTq→3, can still
be reached.

In the SQD scheme, beam SQ3 needs to be amplit
squeezed in order to reduce any noise in the signal qua
ture. As a result, the phase quadrature becomes very nois
1/VSQ3→`. The unfavorable consequence of this is that
fidelity of the scheme is found to be vanishingly small. T
fidelity equation~10! reduces to

ct
it.
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FIG. 6. The SQD-teleporterT-V plot using only three quadra
tures of interest, withVSQ35VSQ. ~a! With coherent states.~b! With
3-dB squeezing (VSQ50.5), and~c! with 10-dB squeezing (VSQ

50.1). ~d! Locus of unity gain points from no squeezing to perfe
squeezing.
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DOLIŃSKA et al. PHYSICAL REVIEW A 68, 052308 ~2003!
FSQD5
2

~11VSQ!A~VSQ312!S 1

VSQ3
11D

. ~20!

In fact, the maximum fidelity of the replicated quantum sta
is F5A(2/3), attained when there is no SQ3 squeezing a
and VSQ→0. Figure 7 shows two possible fidelity curve
with and without SQ3 beam squeezing. The SQD-telepo
curve exceeds the results of the twin teleporters for
squeezing levels up to 80%, even though less resource
used. This is because there are fewer measurement pen
in the three beam case. When performing classical telepo
tion ~i.e., teleportation with coherent states in place of e
tanglement! of all four quadratures, each quadrature reco
struction will degrade the fidelity. Classical teleportation
only three quadratures means the fourth quadrature is
degraded and therefore does not contribute to reducing
fidelity. The classical limit in the case of the SQD protoc
may then be redefined by substitutingVSQ5VSQ351 in Eq.
~20!, giving F51/A6.

VI. BIASED ENTANGLEMENT TELEPORTER SCHEME

It is somewhat disappointing that our SQD-telepor
scheme described in Sec. V performs worse in terms o
delity when the SQ3 beam is squeezed@Figs. 7~b! and 7~c!#.
In this section we present an alternative polarization telep
tation scheme that also uses three squeezed beams bu
perform better than the SQD-teleporter scheme in term
fidelity.

Here, we use the third squeezed beam to generate
tanglement of the vertical polarization. A single squeez
beam and a vacuum mode are combined on a beam sp
~labeled«1), the outputs of this beam splitter then exhib
biased entanglement@15#. That is, strong correlations ar
evident between the squeezed quadratures of the two out
but only shot-noise limited correlations exist between
beams for the orthogonal quadratures@15#. One of the biased
entangled beams is then mixed with the vertical mode of
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Variance of the squeezed quadrature

SQD-teleporter scheme
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FIG. 7. The fidelity curves for~a! the twin teleporter system,~b!
the SQD-teleporter system withVSQ35VSQ, and ~c! the SQD-
teleporter system with no squeezing on the SQ3 beam.
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input state at the second beam splitter~labeled«2). The abil-
ity to choose the transmittivity of this beam splitter allow
measurements of the amplitude quadrature of the vert
signal, which is equivalent todS1, or the phase quadrature o
the vertical input, which is not represented on the Poinc´
sphere, or to alternatively measure any combination of
two. The signal is then detected and fed forward to
modulators. We term this configuration biased entanglem
teleportation~BET! ~see Fig. 8!.

The BET scheme can be thought of a modification of
twin teleporters, which tries to limit the resources from fo
bright, squeezed beams to only three. One EPR pair is
maximally entangled and teleports the horizontal fluctuatio
as before; however, the vertical information on the signa
teleported with one of the squeezed beams turned off. F
ther, the SQD-teleporter scheme from Sec. V is a special c
of the BET scheme and can be recovered by setting«151
and«250.

The fidelity of a BET setup surpasses theF5A(2/3) di-
rect detection limit. To do this, various parameters of t
system can be optimized according to the value of squee
injected,VSQ3

6 . The beam splitter transmittivities«1 and«2

can be changed to optimize Eq.~10!. The amplitude modu-
lator gaing1 which relates to the vertically polarized sign
quadrature needs to be kept at unity. The phase modu
gain g2 , however, relates to the quadrature with no info
mation, and hence is optimized to minimize the reconstr
tion noise. Both gains are functions of«1 , «2, and the
squeezingVSQ3

6 . The polarity ofg1 and the quadrature bein
squeezed~eitherVSQ3

2 or VSQ3
1 ), suggest four possible ope

ating regimes. Our detailed analysis shows that three of th
regimes have maximum fidelity surpassing that of the SQ
teleporter scheme. For the remainder of this section we
only discuss the best regime, which was obtained with fe
forward gain ofg1.0, and with the input phase squeez
(VSQ3

2 ,1).
The improvement in the fidelity of the system occurs b

cause at the extremes of squeezing«1 and «2→0, so that

g+

Signal OUT

g-

sender

receiver

_
+

D-

D+

Vertical

Signal IN

(Vsig
+)

ε1

ε2

Squeezed

bright beam

(VSQ3)

Vacuum

noise

( Vυ )

quadrature teleporter

Signal IN

FIG. 8. Biased entanglement teleporter experimental setup.«1,
the variable transmittivity beam splitter for biased entanglemen
the inputs;«2, the variable transmittivity beam splitter for dete
tion; D6 . amplitude/phase homodyne detection;1/2, amplitude/
phase modulators;g6 , amplitude/phase feed-forward gains; an
PBS, polarizing beam splitter.
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almost all of the signal in the BET scheme is directed to
amplitude detectorD1 while most of the phase quadratu
squeezing goes directly to the phase detectorD2 . The
modulation is then imprinted onto a nearly quantum no
limited beam. Some correlations exist between the dete
phase fluctuations and the fluctuations of the output be
which enable a cancellation of the output phase quadra
variance down to half the original shot noise level. The s
nal ~amplitude! quadrature only pays the measurement p
alty by coupling to a single unit of vacuum noise. For t
biased entanglement part of the BET setup, pictured on
lower part of Fig. 8, the expression for fidelity in terms of t
beam splitter ratios is given by

Fmax5
A

ABC , ~21!

whereA, B, andC are given by

A52A~«221!@«2~VSQ3
1 21!~«121!2«1~VSQ3

1 21!21#,
~22!

B52«2~VSQ3
1 21!~«121!2«1~VSQ3

1 21!22, ~23!

C5«2@322«11VSQ3
1 ~2«121!#

12~VSQ3
1 21!A«2~12«2!«1~12«1!

2«1~VSQ3
1 21!23, ~24!

and we takeVSQ3
1 51/VSQ3

2 , with VSQ3
2 ,1.

Figure 9~b! shows a plot of the product of Eq.~21! and
F51/(VSQ

1 11), the fidelity of the quadrature teleporter wi
two equally amplitude squeezed beams (VSQ

1 ,1). It illus-
trates the fidelity of the optimum BET scheme by varyi
transmittivities«1 and «2 as a function of squeezing. Th
maximum reached at ideal squeezing isF52A2/3'0.943.
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FIG. 9. The comparison of the fidelity curves for~a! the SQD-
teleporter scheme,~b! the optimum BET scheme, and~c! the opti-
mized twin teleporters. The schemes are all equivalent at
squeezing parameter.
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As expected, unity fidelity is never reached, however for
input squeezing levels the BET scheme is better than
SQD-teleporter scheme. Furthermore, the BET scheme
surpass the performance of the twin teleporters scheme
troduced in Sec. IV at squeezing values within experimen
reach. This scheme preserves the quantum nature of the
plete state well but, as will be shown shortly, when inform
tion transfer is considered it is inferior to that of the SQ
teleporter scheme.

The evaluation of the transfer coefficient and condition
variance is also dependent on the optimization of gain, be
splitter ratios, and available squeezing parameters. Howe
the parameters optimized for fidelity do not necessarily c
respond to the bestT-V result. This occurs because fidelit
weights every quadrature or Stokes operator equally, whe
T-V analysis concentrates on the information contain
variablesS1 , S2, andS3. The BET system then needs to b
reoptimized and again, various regimes are reached dep
ing on the transmittivities of«1 and«2. Our analysis shows
that TV

1 and Vcv,V
1 as a function of feed-forward gain ar

optimized if the BET arrangement is set to recover the SQ
teleporter scheme of Fig. 6, by setting«151 and «250.
Here the function TV

15(4g1
2 )/(4g1

2 1VSQ
1 )→1, as g1

→`. With greater squeezing, the transfer coefficient a
proaches unity more rapidly asg1 increases. The amplitud
quadrature conditional variance is independent of g
Vcv,V

1 5VSQ3
1 and the minimum of zero occurs only in th

limit of perfect squeezing.
It is clear from the above fidelity andT-V analysis that

successful information transfer is not necessarily linked to
improvement in fidelity. When optimizing the fidelity, th
BET protocol is weighted in favor of better state overla
This means improving the output phase noise of the S
beam. Reducing this phase noise, however, means sacrifi
signal and reducing the signal transfer coefficient. The de
sion of which characterization method to use should be m
dependening on the particular quantum information proto
for which the teleportation scheme is to be used.

VII. OPTIMIZED TWIN TELEPORTER SCHEME

The fidelity curve as a function of squeezing for the tw
teleporters in Fig. 7~a! could also be optimized for the am
plitude coded input signal considered in this paper. This
be achieved in a manner similar to the biased entanglem
teleportation optimization, by adjusting the beam split
transmittivities for each squeezing value. When all four
puts are equally squeezed (VSQ35VSQ5Vn) and the pairs
are 90° out of phase for best results, the fidelity is given

F4SQ5
D

AMN
, ~25!

whereD, M, andN are given by

w
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D52AVSQ3
1 ~«221!@«2~VSQ3

1 21!@VSQ3
1 ~«121!1«1#1~VSQ3

1 !2~12«1!1«1#, ~26!

M5~11VSQ3
1 !@«2~VSQ3

1 21!~122«1!1«1~VSQ3
1 21!2VSQ3

1 #,

N5«2@122VSQ3
1 22«12~VSQ3

1 !2~122«1!#1@12~VSQ3
1 !2#@«122A«2~12«2!«1~12«1!#12VSQ3

1 1~VSQ3
1 !2. ~27!
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Again, several regimes emerge; however, only the optim
regime for fidelity is considered here. This is shown in F
9~c!. The two optimized systems of BET@Fig. 9~b!# and twin
teleporters show comparable results at lower values of
squeezing parameter, even though the twin teleporter
quires more resources.

VIII. CONCLUSION

We have investigated schemes for the teleportation of
larization states carried by bright optical beams. We h
shown that simply performing quadrature teleportation
the horizontal and vertical constituent modes separatel
not optimal in terms of squeezing resources with respec
both the T-V and fidelity figures of merit. We introduc
schemes that optimize the squeezing resources require
polarization teleportation with respect to each figure of me
We find that the optimization is different depending on t
figure of merit being used.

The difference in optimization of the two figures of me
can be understood in the following way. When small sign
are applied to the polarization sidebands of a light field, th
d

r,
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can be considered to be a two-mode coherent stateuaH&uaV&.
Due to our choice of basis, both figures of merit quantify t
transfer of quantum information on the horizontal mod
however, they differ in how they treat the vertical mode. T
T-V analysis considers the vertical mode to be a quan
limited classical channel. That is, it only considers the a
plitude quadrature of the vertical mode, since the ph
quadrature plays no role in determining the polarization
the composite field. On the other hand the fidelity analy
considers the vertical mode to carry quantum information
a restricted domain, with no classical signal present on
phase quadrature (dXV,c

2 50). The appropriate figure o
merit, and thus the most efficient teleportation protocol
use in a particular circumstance, depends on the way
which the quantum information is being encoded.
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