226 research outputs found

    The role of temporal coherence and temporal predictability in the build-up of auditory grouping

    Get PDF
    The cochlea decomposes sounds into separate frequency channels, from which the auditory brain must reconstruct the auditory scene. To do this the auditory system must make decisions about which frequency information should be grouped together, and which should remain distinct. Two key cues for grouping are temporal coherence, resulting from coherent changes in power across frequency, and temporal predictability, resulting from regular or predictable changes over time. To test how these cues contribute to the construction of a sound scene we present listeners with a range of precursor sounds, which act to prime the auditory system by providing information about each sounds structure, followed by a fixed masker in which participants were required to detect the presence of an embedded tone. By manipulating temporal coherence and/or temporal predictability in the precursor we assess how prior sound exposure influences subsequent auditory grouping. In Experiment 1, we measure the contribution of temporal predictability by presenting temporally regular or jittered precursors, and temporal coherence by using either narrow or broadband sounds, demonstrating that both independently contribute to masking/unmasking. In Experiment 2, we measure the relative impact of temporal coherence and temporal predictability and ask whether the influence of each in the precursor signifies an enhancement or interference of unmasking. We observed that interfering precursors produced the largest changes to thresholds

    Drosophila Neurexin IV Interacts with Roundabout and Is Required for Repulsive Midline Axon Guidance

    Get PDF
    Slit/Roundabout (Robo) signaling controls midline repulsive axon guidance. However, proteins that interact with Slit/Robo at the cell surface remain largely uncharacterized. Here, we report that the Drosophila transmembrane septate junction-specific protein, Neurexin IV (Nrx IV), functions in midline repulsive axon guidance. Nrx IV is expressed in the neurons of the developing ventral nerve cord and nrx IV mutants show crossing and circling of ipsilateral axons and fused commissures. Interestingly, the axon guidance defects observed in nrx IV mutants seem independent of its other binding partners such as Contactin and Neuroglian and the midline glia protein Wrapper that interacts in trans with Nrx IV. nrx IV mutants show diffuse Robo localization and dose-dependent genetic interactions between nrx IV/robo and nrx IV/slit indicate that they function in a common pathway. In vivo biochemical studies reveal that Nrx IV associates with Robo, Slit and Syndecan, and interactions between Robo and Slit, or Nrx IV and Slit, are affected in nrx IV and robo mutants, respectively. Coexpression of Nrx IV and Robo in mammalian cells confirms that these proteins retain the ability to interact in a heterologous system. Furthermore, we demonstrate that the extracellular region of Nrx IV is sufficient to rescue Robo localization and axon guidance phenotypes in nrx IV mutants. Together our studies establish that Nrx IV is essential for proper Robo localization, and identify Nrx IV as a novel interacting partner of the Slit/Robo signaling pathway

    Fast-resorbable antibiotic-loaded hydrogel coating to reduce post-surgical infection after internal osteosynthesis : a multicenter randomized controlled trial

    Get PDF
    BACKGROUND: Infection is one of the main reasons for failure of orthopedic implants. Antibacterial coatings may prevent bacterial adhesion and biofilm formation, according to various preclinical studies. The aim of the present study is to report the first clinical trial on an antibiotic-loaded fast-resorbable hydrogel coating (Defensive Antibacterial Coating, DAC\uae) to prevent surgical site infection, in patients undergoing internal osteosynthesis for closed fractures. MATERIALS AND METHODS: In this multicenter randomized controlled prospective study, a total of 256 patients in five European orthopedic centers who were scheduled to receive osteosynthesis for a closed fracture, were randomly assigned to receive antibiotic-loaded DAC or to a control group (without coating). Pre- and postoperative assessment of laboratory tests, wound healing, clinical scores and X-rays were performed at fixed time intervals. RESULTS: Overall, 253 patients were available with a mean follow-up of 18.1 \ub1 4.5 months (range 12-30). On average, wound healing, clinical scores, laboratory tests and radiographic findings did not show any significant difference between the two groups. Six surgical site infections (4.6%) were observed in the control group compared to none in the treated group (P < 0.03). No local or systemic side-effects related to the DAC hydrogel product were observed and no detectable interference with bone healing was noted. CONCLUSIONS: The use of a fast-resorbable antibiotic-loaded hydrogel implant coating provides a reduced rate of post-surgical site infections after internal osteosynthesis for closed fractures, without any detectable adverse event or side-effects. LEVEL OF EVIDENCE: 2

    Osteoanabolic effect of alendronate and zoledronate on bone marrow stromal cells (BMSCs) isolated from aged female osteoporotic patients and its implications for their mode of action in the treatment of age-related bone loss

    Get PDF
    Summary: In the present study, we evaluated the potential for aminobisphosphonates to enhance the development of bone-forming osteoblasts from progenitor cells isolated from aged female osteoporotic patients. The aminobisphosphonates tested significantly enhanced osteoblast formation and thus lend further insights into their possible mode of action in the treatment of osteoporosis. Introduction: The primary aim of this study was to evaluate the influence of aminobisphosphonates on the osteogenesis of human bone marrow stromal cells (hBMSCs) and mineralization of differentiating bone-forming cells isolated from osteoporotic patients. Methods: The influence of aminobisphosphonate treatment on hBMSC osteogenesis was assessed by the quantitative measurement of alkaline phosphatase (ALP) activity, in addition to quantitative reverse transcription polymerase chain reaction and Western blot analysis of known osteogenic markers. Mineralized matrix formation by hBMSC-derived osteoblasts was visualized and quantified using Alizarin red staining. Results: hBMSC cultures treated with osteogenic medium supplemented with zoledronate demonstrated a significant increase in Alizarin red staining after 3weeks as compared to cells cultured in osteogenic medium alone. Similarly, cultures of differentiating hBMSCs isolated from patients receiving alendronate treatment also demonstrated an increased propensity for mineralization, even in the absence of further in vitro stimulation by zoledronate. The stimulatory effects of aminobisphosphonate treatment on hBMSC-derived osteoblast-mediated mineralization were independent of any alterations in ALP activity, although significant decreases in the expression levels of osteopontin (SPP1) were evident in hBMSCs following exposure to aminobisphosphonates. Further analysis including Western blotting and loss-of-function studies revealed osteopontin as having a negative influence on the mineralization of differentiating osteoporotic bone-forming cells. Conclusions: The results presented here demonstrate for the first time that aminobisphosphonate treatment of osteoporotic hBMSCs enhances their capacity for osteoblast formation and subsequent mineral deposition, thus supporting the concept of aminobisphosphonates as having an osteoanabolic effect in osteoporosis

    Role of dexamethasone dosage in combination with 5-HT3 antagonists for prophylaxis of acute chemotherapy-induced nausea and vomiting

    Get PDF
    Dexamethasone (20 mg) or its equivalent in combination with 5-HT3 antagonists appears to be the gold-standard dose for antiemetic prophylaxis. Additional to concerns about the use of corticosteroids with respect to enhanced tumour growth or impaired killing of the tumour cells, there is evidence that high-dosage dexamethasone impairs the control of delayed nausea and emesis, whereas lower doses appear more beneficial. To come closer to the most adequate dose, we started a prospective, single-blind, randomized trial investigating additional dosage of 8 or 20 mg dexamethasone to tropisetron (Navoban), a 5-HT3 receptor antagonist, in cis-platinum-containing chemotherapy. After an interim analysis of 121 courses of chemotherapy in 69 patients, we have been unable to detect major differences between both treatment alternatives. High-dose dexamethasone (20 mg) had no advantage over medium-dose dexamethasone with respect to objective and subjective parameters of acute and delayed nausea and vomiting. In relation to concerns about the use of corticosteroids in non-haematological cancer chemotherapy, we suggest that 8 mg or its equivalent should be used in combination with 5-HT3 antagonists until further research proves otherwise. © 1999 Cancer Research Campaig

    Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein–protein interactions

    Get PDF
    amylose extender (ae−) starches characteristically have modified starch granule morphology resulting from amylopectin with reduced branch frequency and longer glucan chains in clusters, caused by the loss of activity of the major starch branching enzyme (SBE), which in maize endosperm is SBEIIb. A recent study with ae− maize lacking the SBEIIb protein (termed ae1.1 herein) showed that novel protein–protein interactions between enzymes of starch biosynthesis in the amyloplast could explain the starch phenotype of the ae1.1 mutant. The present study examined an allelic variant of the ae− mutation, ae1.2, which expresses a catalytically inactive form of SBEIIb. The catalytically inactive SBEIIb in ae1.2 lacks a 28 amino acid peptide (Val272–Pro299) and is unable to bind to amylopectin. Analysis of starch from ae1.2 revealed altered granule morphology and physicochemical characteristics distinct from those of the ae1.1 mutant as well as the wild-type, including altered apparent amylose content and gelatinization properties. Starch from ae1.2 had fewer intermediate length glucan chains (degree of polymerization 16–20) than ae1.1. Biochemical analysis of ae1.2 showed that there were differences in the organization and assembly of protein complexes of starch biosynthetic enzymes in comparison with ae1.1 (and wild-type) amyloplasts, which were also reflected in the composition of starch granule-bound proteins. The formation of stromal protein complexes in the wild-type and ae1.2 was strongly enhanced by ATP, and broken by phosphatase treatment, indicating a role for protein phosphorylation in their assembly. Labelling experiments with [γ-32P]ATP showed that the inactive form of SBEIIb in ae1.2 was phosphorylated, both in the monomeric form and in association with starch synthase isoforms. Although the inactive SBEIIb was unable to bind starch directly, it was strongly associated with the starch granule, reinforcing the conclusion that its presence in the granules is a result of physical association with other enzymes of starch synthesis. In addition, an Mn2+-based affinity ligand, specific for phosphoproteins, was used to show that the granule-bound forms of SBEIIb in the wild-type and ae1.2 were phosphorylated, as was the granule-bound form of SBEI found in ae1.2 starch. The data strongly support the hypothesis that the complement of heteromeric complexes of proteins involved in amylopectin synthesis contributes to the fine structure and architecture of the starch granule

    Thoracolumbar injury classification and severity score: a new paradigm for the treatment of thoracolumbar spine trauma

    Get PDF
    BACKGROUND: Contemporary understanding of the biomechanics, natural history, and methods of treating thoracolumbar spine injuries continues to evolve. Current classification schemes of these injuries, however, can be either too simplified or overly complex for clinical use. METHODS: The Spine Trauma Group was given a survey to identify similarities in treatment algorithms for common thoracolumbar injuries, as well as to identify characteristics of injury that played a key role in the decision-making process. RESULTS: Based on the survey, the Spine Trauma Group has developed a classification system and an injury severity score (thoracolumbar injury classification and severity score, or TLICS), which may facilitate communication between physicians and serve as a guideline for treating these injuries. The classification system is based on the morphology of the injury, integrity of the posterior ligamentous complex, and neurological status of the patient. Points are assigned for each category, and the final total points suggest a possible treatment option. CONCLUSIONS: The usefulness of this new system will have to be proven in future studies investigating inter- and intraobserver reliability, as well as long-term outcome studies for operative and nonoperative treatment methods

    Pitfalls and complications in the treatment of cervical spine fractures in patients with ankylosing spondylitis

    Get PDF
    Patients with ankylosing spondylitis are at significant risk for sustaining cervical spine injuries following trauma predisposed by kyphosis, stiffness and osteoporotic bone quality of the spine. The risk of sustaining neurological deficits in this patient population is higher than average. The present review article provides an outline on the specific injury patterns in the cervical spine, diagnostic algorithms and specific treatment modalities dictated by the underlying disease in patients with ankylosing spondylitis. An emphasis is placed on the risks and complication patterns in the treatment of these rare, but challenging injuries

    Diversification of Genes Encoding Granule-Bound Starch Synthase in Monocots and Dicots Is Marked by Multiple Genome-Wide Duplication Events

    Get PDF
    Starch is one of the major components of cereals, tubers, and fruits. Genes encoding granule-bound starch synthase (GBSS), which is responsible for amylose synthesis, have been extensively studied in cereals but little is known about them in fruits. Due to their low copy gene number, GBSS genes have been used to study plant phylogenetic and evolutionary relationships. In this study, GBSS genes have been isolated and characterized in three fruit trees, including apple, peach, and orange. Moreover, a comprehensive evolutionary study of GBSS genes has also been conducted between both monocots and eudicots. Results have revealed that genomic structures of GBSS genes in plants are conserved, suggesting they all have evolved from a common ancestor. In addition, the GBSS gene in an ancestral angiosperm must have undergone genome duplication ∼251 million years ago (MYA) to generate two families, GBSSI and GBSSII. Both GBSSI and GBSSII are found in monocots; however, GBSSI is absent in eudicots. The ancestral GBSSII must have undergone further divergence when monocots and eudicots split ∼165 MYA. This is consistent with expression profiles of GBSS genes, wherein these profiles are more similar to those of GBSSII in eudicots than to those of GBSSI genes in monocots. In dicots, GBSSII must have undergone further divergence when rosids and asterids split from each other ∼126 MYA. Taken together, these findings suggest that it is GBSSII rather than GBSSI of monocots that have orthologous relationships with GBSS genes of eudicots. Moreover, diversification of GBSS genes is mainly associated with genome-wide duplication events throughout the evolutionary course of history of monocots and eudicots
    corecore