22 research outputs found

    Stable Isotope Evidence for Dietary Overlap between Alien and Native Gastropods in Coastal Lakes of Northern KwaZulu-Natal, South Africa

    Get PDF
    Tarebia granifera (Lamarck, 1822) is originally from South-East Asia, but has been introduced and become invasive in many tropical and subtropical parts of the world. In South Africa, T. granifera is rapidly invading an increasing number of coastal lakes and estuaries, often reaching very high population densities and dominating shallow water benthic invertebrate assemblages. An assessment of the feeding dynamics of T. granifera has raised questions about potential ecological impacts, specifically in terms of its dietary overlap with native gastropods.A stable isotope mixing model was used together with gut content analysis to estimate the diet of T. granifera and native gastropod populations in three different coastal lakes. Population density, available biomass of food and salinity were measured along transects placed over T. granifera patches. An index of isotopic (stable isotopes) dietary overlap (IDO, %) aided in interpreting interactions between gastropods. The diet of T. granifera was variable, including contributions from microphytobenthos, filamentous algae (Cladophora sp.), detritus and sedimentary organic matter. IDO was significant (>60%) between T. granifera and each of the following gastropods: Haminoea natalensis (Krauss, 1848), Bulinus natalensis (Küster, 1841) and Melanoides tuberculata (Müller, 1774). However, food did not appear to be limiting. Salinity influenced gastropod spatial overlap. Tarebia granifera may only displace native gastropods, such as Assiminea cf. ovata (Krauss, 1848), under salinity conditions below 20. Ecosystem-level impacts are also discussed.The generalist diet of T. granifera may certainly contribute to its successful establishment. However, although competition for resources may take place under certain salinity conditions and if food is limiting, there appear to be other mechanisms at work, through which T. granifera displaces native gastropods. Complementary stable isotope and gut content analysis can provide helpful ecological insights, contributing to monitoring efforts and guiding further invasive species research

    Biologically relevant mechanism for catalytic superoxide removal by simple manganese compounds

    No full text
    Nonenzymatic manganese was first shown to provide protection against superoxide toxicity in vivo in 1981, but the chemical mechanism responsible for this protection subsequently became controversial due to conflicting reports concerning the ability of Mn to catalyze superoxide disproportionation in vitro. In a recent communication, we reported that low concentrations of a simple Mn phosphate salt under physiologically relevant conditions will indeed catalyze superoxide disproportionation in vitro. We report now that two of the four Mn complexes that are expected to be most abundant in vivo, Mn phosphate and Mn carbonate, can catalyze superoxide disproportionation at physiologically relevant concentrations and pH, whereas Mn pyrophosphate and citrate complexes cannot. Additionally, the chemical mechanisms of these reactions have been studied in detail, and the rates of reactions of the catalytic removal of superoxide by Mn phosphate and carbonate have been modeled. Physiologically relevant concentrations of these compounds were found to be sufficient to mimic an effective concentration of enzymatic superoxide dismutase found in vivo. This mechanism provides a likely explanation as to how Mn combats superoxide stress in cellular systems

    Probing in vivo Mn2+ speciation and oxidative stress resistance in yeast cells with electron-nuclear double resonance spectroscopy

    No full text
    Manganese is an essential transition metal that, among other functions, can act independently of proteins to either defend against or promote oxidative stress and disease. The majority of cellular manganese exists as low molecular-weight Mn2+ complexes, and the balance between opposing “essential” and “toxic” roles is thought to be governed by the nature of the ligands coordinating Mn2+. Until now, it has been impossible to determine manganese speciation within intact, viable cells, but we here report that this speciation can be probed through measurements of 1H and 31P electron-nuclear double resonance (ENDOR) signal intensities for intracellular Mn2+. Application of this approach to yeast (Saccharomyces cerevisiae) cells, and two pairs of yeast mutants genetically engineered to enhance or suppress the accumulation of manganese or phosphates, supports an in vivo role for the orthophosphate complex of Mn2+ in resistance to oxidative stress, thereby corroborating in vitro studies that demonstrated superoxide dismutase activity for this species

    Yeast copper–zinc superoxide dismutase can be activated in the absence of its copper chaperone

    No full text
    Copper–zinc superoxide dismutase (Sod1) is an abundant intracellular enzyme that catalyzes the disproportionation of superoxide to give hydrogen peroxide and dioxygen. In most organisms, Sod1 acquires copper by a combination of two pathways, one dependent on the copper chaperone for Sod1 (CCS), and the other independent of CCS. Examples have been reported of two exceptions: Saccharomyces cerevisiae, in which Sod1 appeared to be fully dependent on CCS, and Caenorhabditis elegans, in which Sod1 was completely independent of CCS. Here, however, using overexpressed Sod1, we show there is also a significant amount of CCS-independent activation of S. cerevisiae Sod1, even in low-copper medium. In addition, we show CCS-independent oxidation of the disulfide bond in S. cerevisiae Sod1. There appears to be a continuum between CCS-dependent and CCS-independent activation of Sod1,with yeast falling near but not at the CCS-dependent end
    corecore