755 research outputs found

    XIV.— Description of animal life in Nova Zembla

    Get PDF
    n/

    Inclusive particle production at HERA: Higher-order QCD corrections to the resolved quasi-real photon contribution

    Full text link
    We calculate in next-to-leading order inclusive cross sections of single-particle production via resolved photons in epep collisions at HERA. Transverse-momentum and rapidity distributions are presented and the scale dependence is studied. The results are compared with first experimental data from the H1 Collaboration at HERA.Comment: 11 pages with 15 uuencoded PS figures. Preprint DESY 93-03

    Naturally split supersymmetry

    Get PDF
    Nonobservation of superparticles till date, new Higgs mass limits from the CMS and ATLAS experiments, WMAP constraints on relic density, various other low energy data, and the naturalness consideration, all considered simultaneously imply a paradigm shift of supersymmetric model building. In this paper we perform, for the first time, a detailed numerical study of brane-world induced supersymmetry breaking for both minimal and next-to-minimal scenarios. We observe that a naturally hierarchical spectrum emerges through an interplay of bulk, brane-localized and quasi-localized fields, which can gain more relevance in the subsequent phases of the LHC run.Comment: 6 pages, 6 eps figures; v2: minor updates, to appear in JHE

    A Halomethane thermochemical network from iPEPICO experiments and quantum chemical calculations

    Get PDF
    Internal energy selected halomethane cations CH3Cl+, CH2Cl2+, CHCl3+, CH3F+, CH2F2+, CHClF2+ and CBrClF2+ were prepared by vacuum ultraviolet photoionization, and their lowest energy dissociation channel studied using imaging photoelectron photoion coincidence spectroscopy (iPEPICO). This channel involves hydrogen atom loss for CH3F+, CH2F2+ and CH3Cl+, chlorine atom loss for CH2Cl2+, CHCl3+ and CHClF2+, and bromine atom loss for CBrClF2+. Accurate 0 K appearance energies, in conjunction with ab initio isodesmic and halogen exchange reaction energies, establish a thermochemical network, which is optimized to update and confirm the enthalpies of formation of the sample molecules and their dissociative photoionization products. The ground electronic states of CHCl3+, CHClF2+ and CBrClF2+ do not confirm to the deep well assumption, and the experimental breakdown curve deviates from the deep well model at low energies. Breakdown curve analysis of such shallow well systems supplies a satisfactorily succinct route to the adiabatic ionization energy of the parent molecule, particularly if the threshold photoelectron spectrum is not resolved and a purely computational route is unfeasible. The ionization energies have been found to be 11.47 ± 0.01 eV, 12.30 ± 0.02 eV and 11.23 ± 0.03 eV for CHCl3, CHClF2 and CBrClF2, respectively. The updated 0 K enthalpies of formation, ∆fHo0K(g) for the ions CH2F+, CHF2+, CHCl2+, CCl3+, CCl2F+ and CClF2+ have been derived to be 844.4 ± 2.1, 601.6 ± 2.7, 890.3 ± 2.2, 849.8 ± 3.2, 701.2 ± 3.3 and 552.2 ± 3.4 kJ mol–1, respectively. The ∆fHo0K(g) values for the neutrals CCl4, CBrClF2, CClF3, CCl2F2 and CCl3F and have been determined to be –94.0 ± 3.2, –446.6 ± 2.7, –702.1 ± 3.5, –487.8 ± 3.4 and –285.2 ± 3.2 kJ mol–1, respectively

    Multiband tight-binding theory of disordered ABC semiconductor quantum dots: Application to the optical properties of alloyed CdZnSe nanocrystals

    Full text link
    Zero-dimensional nanocrystals, as obtained by chemical synthesis, offer a broad range of applications, as their spectrum and thus their excitation gap can be tailored by variation of their size. Additionally, nanocrystals of the type ABC can be realized by alloying of two pure compound semiconductor materials AC and BC, which allows for a continuous tuning of their absorption and emission spectrum with the concentration x. We use the single-particle energies and wave functions calculated from a multiband sp^3 empirical tight-binding model in combination with the configuration interaction scheme to calculate the optical properties of CdZnSe nanocrystals with a spherical shape. In contrast to common mean-field approaches like the virtual crystal approximation (VCA), we treat the disorder on a microscopic level by taking into account a finite number of realizations for each size and concentration. We then compare the results for the optical properties with recent experimental data and calculate the optical bowing coefficient for further sizes

    The vertebrate phylotypic stage and an early bilaterian-related stage in mouse embryogenesis defined by genomic information

    Get PDF
    BACKGROUND: Embryos of taxonomically different vertebrates are thought to pass through a stage in which they resemble one another morphologically. This "vertebrate phylotypic stage" may represent the basic vertebrate body plan that was established in the common ancestor of vertebrates. However, much controversy remains about when the phylotypic stage appears, and whether it even exists. To overcome the limitations of studies based on morphological comparison, we explored a comprehensive quantitative method for defining the constrained stage using expressed sequence tag (EST) data, gene ontologies (GO), and available genomes of various animals. If strong developmental constraints occur during the phylotypic stage of vertebrate embryos, then genes conserved among vertebrates would be highly expressed at this stage. RESULTS: We established a novel method for evaluating the ancestral nature of mouse embryonic stages that does not depend on comparative morphology. The numerical "ancestor index" revealed that the mouse indeed has a highly conserved embryonic period at embryonic day 8.0–8.5, the time of appearance of the pharyngeal arch and somites. During this period, the mouse prominently expresses GO-determined developmental genes shared among vertebrates. Similar analyses revealed the existence of a bilaterian-related period, during which GO-determined developmental genes shared among bilaterians are markedly expressed at the cleavage-to-gastrulation period. The genes associated with the phylotypic stage identified by our method are essential in embryogenesis. CONCLUSION: Our results demonstrate that the mid-embryonic stage of the mouse is indeed highly constrained, supporting the existence of the phylotypic stage. Furthermore, this candidate stage is preceded by a putative bilaterian ancestor-related period. These results not only support the developmental hourglass model, but also highlight the hierarchical aspect of embryogenesis proposed by von Baer. Identification of conserved stages and tissues by this method in various animals would be a powerful tool to examine the phylotypic stage hypothesis, and to understand which kinds of developmental events and gene sets are evolutionarily constrained and how they limit the possible variations of animal basic body plans

    A Profile Likelihood Analysis of the Constrained MSSM with Genetic Algorithms

    Full text link
    The Constrained Minimal Supersymmetric Standard Model (CMSSM) is one of the simplest and most widely-studied supersymmetric extensions to the standard model of particle physics. Nevertheless, current data do not sufficiently constrain the model parameters in a way completely independent of priors, statistical measures and scanning techniques. We present a new technique for scanning supersymmetric parameter spaces, optimised for frequentist profile likelihood analyses and based on Genetic Algorithms. We apply this technique to the CMSSM, taking into account existing collider and cosmological data in our global fit. We compare our method to the MultiNest algorithm, an efficient Bayesian technique, paying particular attention to the best-fit points and implications for particle masses at the LHC and dark matter searches. Our global best-fit point lies in the focus point region. We find many high-likelihood points in both the stau co-annihilation and focus point regions, including a previously neglected section of the co-annihilation region at large m_0. We show that there are many high-likelihood points in the CMSSM parameter space commonly missed by existing scanning techniques, especially at high masses. This has a significant influence on the derived confidence regions for parameters and observables, and can dramatically change the entire statistical inference of such scans.Comment: 47 pages, 8 figures; Fig. 8, Table 7 and more discussions added to Sec. 3.4.2 in response to referee's comments; accepted for publication in JHE

    Resolved Photon Processes

    Get PDF
    We review the present level of knowledge of the hadronic structure of the photon, as revealed in interactions involving quarks and gluons ``in" the photon. The concept of photon structure functions is introduced in the description of deep--inelastic eγe \gamma scattering, and existing parametrizations of the parton densities in the photon are reviewed. We then turn to hard \gamp\ and \gaga\ collisions, where we treat the production of jets, heavy quarks, hard (direct) photons, \jpsi\ mesons, and lepton pairs. We also comment on issues that go beyond perturbation theory, including recent attempts at a comprehensive description of both hard and soft \gamp\ and \gaga\ interactions. We conclude with a list of open problems.Comment: LaTeX with equation.sty, 85 pages, 29 figures (not included). A complete PS file of the paper, including figures, can be obtained via anonymous ftp from ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-898.ps.

    A Search for Selectrons and Squarks at HERA

    Get PDF
    Data from electron-proton collisions at a center-of-mass energy of 300 GeV are used for a search for selectrons and squarks within the framework of the minimal supersymmetric model. The decays of selectrons and squarks into the lightest supersymmetric particle lead to final states with an electron and hadrons accompanied by large missing energy and transverse momentum. No signal is found and new bounds on the existence of these particles are derived. At 95% confidence level the excluded region extends to 65 GeV for selectron and squark masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
    corecore