59 research outputs found

    Spots & stripes: pleomorphic patterning of stem cells via p-ERK-depenendent cell chemotaxis shown by feather morphogenesis & mathematical simulation

    Get PDF
    A key issue in stem cell biology is the differentiation of homogeneous stem cells towards different fates which are also organized into desired configurations. Little is known about the mechanisms underlying the process of periodic patterning. Feather explants offer a fundamental and testable model in which multi-potential cells are organized into hexagonally arranged primordia and the spacing between primordia. Previous work explored roles of a Turing reaction–diffusion mechanism in establishing chemical patterns. Here we show that a continuum of feather patterns, ranging from stripes to spots, can be obtained when the level of p-ERK activity is adjusted with chemical inhibitors. The patterns are dose-dependent, tissue stage-dependent, and irreversible. Analyses show that ERK activity-dependent mesenchymal cell chemotaxis is essential for converting micro-signaling centers into stable feather primordia. A mathematical model based on short-range activation, long-range inhibition, and cell chemotaxis is developed and shown to simulate observed experimental results. This generic cell behavior model can be applied to model stem cell patterning behavior at large

    Oscillatory cortical forces promote three dimensional cell intercalations that shape the murine mandibular arch

    Get PDF
    Multiple vertebrate embryonic structures such as organ primordia are composed of confluent cells. Although mechanisms that shape tissue sheets are increasingly understood, those which shape a volume of cells remain obscure. Here we show that 3D mesenchymal cell intercalations are essential to shape the mandibular arch of the mouse embryo. Using a genetically encoded vinculin tension sensor that we knock-in to the mouse genome, we show that cortical force oscillations promote these intercalations. Genetic loss- and gain-of-function approaches show that Wnt5a functions as a spatial cue to coordinate cell polarity and cytoskeletal oscillation. These processes diminish tissue rigidity and help cells to overcome the energy barrier to intercalation. YAP/TAZ and PIEZO1 serve as downstream effectors of Wnt5a-mediated actomyosin polarity and cytosolic calcium transients that orient and drive mesenchymal cell intercalations. These findings advance our understanding of how developmental pathways regulate biophysical properties and forces to shape a solid organ primordium

    The Haploinsufficient Hematopoietic Microenvironment Is Critical to the Pathological Fracture Repair in Murine Models of Neurofibromatosis Type 1

    Get PDF
    Germline mutations in the NF1 tumor suppressor gene cause neurofibromatosis type 1 (NF1), a complex genetic disorder with a high predisposition of numerous skeletal dysplasias including short stature, osteoporosis, kyphoscoliosis, and fracture non-union (pseudoarthrosis). We have developed murine models that phenocopy many of the skeletal dysplasias observed in NF1 patients, including reduced bone mass and fracture non-union. We also show that the development of these skeletal manifestations requires an Nf1 haploinsufficient background in addition to nullizygous loss of Nf1 in mesenchymal stem/progenitor cells (MSCs) and/or their progenies. This is replicated in two animal models of NF1, PeriCre+;Nf1flox/− and Col2.3Cre+;Nf1flox/−mice. Adoptive transfer experiments demonstrate a critical role of the Nf1+/− marrow microenvironment in the impaired fracture healing in both models and adoptive transfer of WT bone marrow cells improves fracture healing in these mice. To our knowledge, this is the first demonstration of a non-cell autonomous mechanism in non-malignant NF1 manifestations. Collectively, these data provide evidence of a combinatory effect between nullizygous loss of Nf1 in osteoblast progenitors and haploinsufficiency in hematopoietic cells in the development of non-malignant NF1 manifestations

    The myogenic transcriptional network

    Get PDF
    Myogenesis has been a leading model for elucidating the molecular mechanisms that underlie tissue differentiation and development since the discovery of MyoD. During myogenesis, the fate of myogenic precursor cells is first determined by Pax3/Pax7. This is followed by regulation of the myogenic differentiation program by muscle regulatory factors (Myf5, MyoD, Myog, and Mrf4) to form muscle tissues. Recent studies have uncovered a detailed myogenic program that involves the RP58 (Zfp238)-dependent regulatory network, which is critical for repressing the expression of inhibitor of DNA binding (Id) proteins. These novel findings contribute to a comprehensive understanding of the muscle differentiation transcriptional program

    Stippling the skin: Generation of anatomical periodicity by reaction-diffusion mechanisms

    Get PDF
    During vertebrate development cells acquire different fates depending largely on their location in the embryo. The definition of a cell’s developmental fate relies on extensive intercellular communication that produces positional information and ultimately generates an appropriately proportioned anatomy. Here we place reaction-diffusion mechanisms in the context of general concepts regarding the generation of positional information during development and then focus on these mechanisms as parsimonious systems for positioning anatomical structures relative to one another. In particular, we discuss the evidence for reaction-diffusion systems operating in the developing skin to yield the periodic arrangements of hairs and feathers and discuss how best to bring together experimental molecular biology and numerical simulations to yield a more complete understanding of the mechanisms of development and natural variation

    Getting ‘Smad' about obesity and diabetes

    Get PDF
    Recent findings on the role of transforming growth factor (TGF)-β/Smad3 signaling in the pathogenesis of obesity and type 2 diabetes have underscored its importance in metabolism and adiposity. Indeed, elevated TGF-β has been previously reported in human adipose tissue during morbid obesity and diabetic neuropathy. In this review, we discuss the pleiotropic effects of TGF-β/Smad3 signaling on metabolism and energy homeostasis, all of which has an important part in the etiology and progression of obesity-linked diabetes; these include adipocyte differentiation, white to brown fat phenotypic transition, glucose and lipid metabolism, pancreatic function, insulin signaling, adipocytokine secretion, inflammation and reactive oxygen species production. We summarize the recent in vivo findings on the role of TGF-β/Smad3 signaling in metabolism based on the studies using Smad3−/− mice. Based on the presence of a dual regulatory effect of Smad3 on peroxisome proliferator-activated receptor (PPAR)β/δ and PPARγ2 promoters, we propose a unifying mechanism by which this signaling pathway contributes to obesity and its associated diabetes. We also discuss how the inhibition of this signaling pathway has been implicated in the amelioration of many facets of metabolic syndromes, thereby offering novel therapeutic avenues for these metabolic conditions

    Cutaneous wound healing: recruiting developmental pathways for regeneration

    Full text link

    Targeting adipose tissue

    Get PDF
    Two different types of adipose tissues can be found in humans enabling them to respond to starvation and cold: white adipose tissue (WAT) is generally known and stores excess energy in the form of triacylglycerol (TG), insulates against cold, and serves as a mechanical cushion. Brown adipose tissue (BAT) helps newborns to cope with cold. BAT has the capacity to uncouple the mitochondrial respiratory chain, thereby generating heat rather than adenosine triphosphate (ATP). The previously widely held view was that BAT disappears rapidly after birth and is no longer present in adult humans. Using positron emission tomography (PET), however, it was recently shown that metabolically active BAT occurs in defined regions and scattered in WAT of the adult and possibly has an influence on whole-body energy homeostasis. In obese individuals adipose tissue is at the center of metabolic syndrome. Targeting of WAT by thiazolidinediones (TZDs), activators of peroxisome proliferator-activated receptor γ (PPARγ) a ‘master’ regulator of fat cell biology, is a current therapy for the treatment of type 2 diabetes. Since its unique capacity to increase energy consumption of the body and to dissipate surplus energy as heat, BAT offers new perspectives as a therapeutic target for the treatment of obesity and associated diseases such as type 2 diabetes and metabolic syndrome. Recent discoveries of new signaling pathways of BAT development give rise to new therapeutic possibilities in order to influence BAT content and activity
    corecore