6,891 research outputs found
Why bayesian âevidence for H1â in one condition and bayesian âevidence for H0â in another condition does not mean good-enough bayesian evidence for a difference between the conditions
Psychologists are often interested in whether an independent variable has a different effect in condition A than in condition B. To test such a question, one needs to directly compare the effect of that variable in the two conditions (i.e., test the interaction). Yet many researchers tend to stop when they find a significant test in one condition and a nonsignificant test in the other condition, deeming this as sufficient evidence for a difference between the two conditions. In this Tutorial, we aim to raise awareness of this inferential mistake when Bayes factors are used with conventional cutoffs to draw conclusions. For instance, some researchers might falsely conclude that there must be good-enough evidence for the interaction if they find good-enough Bayesian evidence for the alternative hypothesis, H1, in condition A and good-enough Bayesian evidence for the null hypothesis, H0, in condition B. The case study we introduce highlights that ignoring the test of the interaction can lead to unjustified conclusions and demonstrates that the principle that any assertion about the existence of an interaction necessitates the direct comparison of the conditions is as true for Bayesian as it is for frequentist statistics. We provide an R script of the analyses of the case study and a Shiny app that can be used with a 2 Ă 2 design to develop intuitions on this issue, and we introduce a rule of thumb with which one can estimate the sample size one might need to have a well-powered design
A Combinatorial Polynomial Algorithm for the Linear Arrow-Debreu Market
We present the first combinatorial polynomial time algorithm for computing
the equilibrium of the Arrow-Debreu market model with linear utilities.Comment: Preliminary version in ICALP 201
Statistical Curse of the Second Half Rank
In competitions involving many participants running many races the final rank
is determined by the score of each participant, obtained by adding its ranks in
each individual race. The "Statistical Curse of the Second Half Rank" is the
observation that if the score of a participant is even modestly worse than the
middle score, then its final rank will be much worse (that is, much further
away from the middle rank) than might have been expected. We give an
explanation of this effect for the case of a large number of races using the
Central Limit Theorem. We present exact quantitative results in this limit and
demonstrate that the score probability distribution will be gaussian with
scores packing near the center. We also derive the final rank probability
distribution for the case of two races and we present some exact formulae
verified by numerical simulations for the case of three races. The variant in
which the worst result of each boat is dropped from its final score is also
analyzed and solved for the case of two races.Comment: 16 pages, 10 figure
Axiomatic Characterization of the Mean Function on Trees
A mean of a sequence Ï = (x1, x2, . . . , xk) of elements of a finite metric space (X, d) is an element x for which is minimum. The function Mean whose domain is the set of all finite sequences on X and is defined by Mean(Ï) = { x | x is a mean of Ï } is called the mean function on X. In this paper the mean function on finite trees is characterized axiomatically
The efficacy and experience of MoodGroup, an online group cognitive behavioural-based intervention for the treatment of depression in Australian adults.
Depression is a serious mental health condition affecting approximately 4.1% of Australian adults. Group cognitive behavioural therapy (gCBT) delivered online can potentially provide affordable, accessible, and efficacious treatment to individuals with depression. Online gCBT is an emerging treatment modality and there is a need to broaden the literature regarding its utility and efficacy. Controlled trials are needed to determine the efficacy of online gCBT for depression. This thesis aimed to examine the efficacy, onset of response, group processes, usability, and key stakeholder perspectives of MoodGroup, an online synchronous gCBT intervention for the treatment of clinical depression in Australian adults. In total 92 Australian adults (73 female and 19 male) with a depressive disorder were assigned to either a treatment or wait-list control (WLC) group. Provisional psychologists delivered the treatment intervention with groups of up to eight participants at a time. MoodGroups were hosted in synchronous virtual therapeutic rooms and ran for two hours a week for nine weeks. Participants completed weekly readings and homework activities. They also completed fortnightly outcome measures assessing their depressive symptoms, psychological distress, quality of life (QoL) and group climate perceptions. The usability of the intervention was assessed using weekly online session evaluation questionnaires. A mixed-method approach including linear mixed modelling and thematic content analysis assessed the efficacy and usability of MoodGroup. Additionally, focus groups and interviews were conducted with the MoodGroup facilitators and clinical supervisor to obtain their perspectives on the strengths and limitations of the intervention and recommendations for improvement. The findings of the efficacy trial demonstrated effect sizes favouring the treatment over the control group for all variables, with strong effects (d = 0.65-0.74) noted for measures of depression, psychological distress, anxiety and dysfunctional thoughts. Compared to the WLC, QoL was significantly improved in MoodGroup recipients. Treatment effects were largely maintained over time. The group processes displayed in the MoodGroup intervention were similar to those observed in successful face-to-face gCBT interventions. Furthermore, group climate variables predicted outcome at post-treatment and six-month follow-up. Similar to face-to-face groups, the majority of symptom improvement occurred in the early stages of the MoodGroup intervention. Additionally, early improvement and response to treatment was predictive of treatment gains at the conclusion of the MoodGroup intervention and at six-month follow-up. The usability analysis demonstrated the high usability and acceptability of the intervention. Additionally, valuable insights obtained from the MoodGroup facilitators and clinical supervisor will guide changes to future versions of the intervention and recommendations for group online interventions in general. The major limitations of this research included the small sample size, high rate of attrition and reliance on self-reported data. In conclusion, MoodGroup demonstrated good usability and efficacy. Findings from this thesis contribute to the emerging literature surrounding online group therapy interventions and guide recommendations for future group-based online interventions
Utilitarian Collective Choice and Voting
In his seminal Social Choice and Individual Values, Kenneth Arrow stated that his theory applies to voting. Many voting theorists have been convinced that, on account of Arrowâs theorem, all voting methods must be seriously flawed. Arrowâs theory is strictly ordinal, the cardinal aggregation of preferences being explicitly rejected. In this paper I point out that all voting methods are cardinal and therefore outside the reach of Arrowâs result.
Parallel to Arrowâs ordinal approach, there evolved a consistent cardinal theory of collective choice. This theory, most prominently associated with the work of Harsanyi, continued the older utilitarian tradition in a more formal style. The purpose of this paper is to show that various derivations of utilitarian SWFs can also be used to derive utilitarian voting (UV). By this I mean a voting rule that allows the voter to score each alternative in accordance with a given scale. UV-k indicates a scale with k distinct values. The general theory leaves k to be determined on pragmatic grounds. A (1,0) scale gives approval voting. I prefer the scale (1,0,-1) and refer to the resulting voting rule as evaluative voting.
A conclusion of the paper is that the defects of conventional voting methods result not from Arrowâs theorem, but rather from restrictions imposed on votersâ expression of their preferences.
The analysis is extended to strategic voting, utilizing a novel set of assumptions regarding voter behavior
Why physicians are lousy gatekeepers: Sicklisting decisions when patients have private information on symptoms
In social insurance systems that grant workers paid sick leave, physicians act as gatekeepers, supposedly granting sickness certificates to the sick and not to shirkers. Previous research has emphasized the physician's superior ability to judge patients' need of treatment and potential collusion with the patient visâĂĄâvis an insurer. What is less well understood is the role of patients' private information. We explore the case where patients have private information about the presence of nonverifiable symptoms. Anyone can then claim to experience such symptoms, reducing physicians' ability to distinguish between sick patients and shirkers. Doubting a patients' reported symptoms may prevent good medical treatment of the truly sick. We show that for all parameter values, the Bayesian Nash equilibrium is that some physicians trust all claims of nonverifiable symptoms, sicklisting shirkers as well as sick; for many values, every physician is trusting. In particular, if physician strategies are observable by patients, extremely strong gatekeeping preferences are required to make physicians mistrust. To limit unwarranted sicklisting, policies reducing the benefits of shirking for healthy workers may be better suited than attempts to convince physicians to be strict.publishedVersio
How Do Households Discount Over Centuries? Evidence from Singapore's Private Housing Market
We examine Singapore's fairly homogeneous private-housing market and show that new apartments on historical multi-century leases trade at a non-zero discount relative to property owned in perpetuity. Descriptive regressions indicate that new apartments with 825 to 986 years of tenure remaining are priced 4 to 6% below new apartments under perpetual ownership contracts that are otherwise comparable. We consider an empirical model in which asset value is decomposed into the utility of housing services and a second factor that shifts with asset tenure and the discount rate schedule. Exploiting the supply of new property with tenure ranging from multiple decades to multiple centuries, we estimate the discount rate schedule, restricting it to vary smoothly over time through alternative parametric forms. Across different specifications and subsamples, we estimate discount rates that decline over time and, accounting for the observed price differences, are of the order of 0.5% p.a. by year 400-500. The finding that households making sizable transactions do not entirely discount benefits accruing many centuries from today is new to the empirical literature on discounting and, with the appropriate risk adjustment, of relevance to evaluating climate-change investments
Modularity and Optimality in Social Choice
Marengo and the second author have developed in the last years a geometric
model of social choice when this takes place among bundles of interdependent
elements, showing that by bundling and unbundling the same set of constituent
elements an authority has the power of determining the social outcome. In this
paper we will tie the model above to tournament theory, solving some of the
mathematical problems arising in their work and opening new questions which are
interesting not only from a mathematical and a social choice point of view, but
also from an economic and a genetic one. In particular, we will introduce the
notion of u-local optima and we will study it from both a theoretical and a
numerical/probabilistic point of view; we will also describe an algorithm that
computes the universal basin of attraction of a social outcome in O(M^3 logM)
time (where M is the number of social outcomes).Comment: 42 pages, 4 figures, 8 tables, 1 algorithm
Reservefonds gegen Naturkatastrophen auf nationaler und europÀischer Ebene
Katastrophenfonds funktionieren nach dem Prinzip der Kapitalakkumulation. Sie werden teilweise auf nationaler und europĂ€ischer Ebene eingesetzt, um sich gegen die finanziellen SchĂ€den, verursacht durch extreme Naturereignisse, zu schĂŒtzen. Basierend auf Beispielen in Europa, wie dem österreichischen Katastrophenfonds sowie dem europĂ€ischen SolidaritĂ€tsfonds, werden die Vor- und Nachteile von Reservefonds aufgezeigt und mögliche LösungsvorschlĂ€ge fĂŒr gegenwĂ€rtige Probleme prĂ€sentiert. Vor allem die nichtrisikobasierte Anwendung wird als Problem betrachtet. Es werden Methoden vorgestellt, wie ein wahrscheinlichkeitstheoretischer Ansatz aussehen könnte, um sowohl direkte als auch indirekte SchĂ€den bei der Analyse mit einzubeziehen und daraus Strategien zu entwickeln, die sich langfristig als nachhaltig erweisen.Catastrophe reserve funds are used to cover the potential costs of a disaster by capital accumulation. Based on examples in Europe, especially the national disaster fund in Austria and the European Solidarity Fund, the advantages and disadvantages of such a risk management instrument are shown and possible solutions are proposed. The main criticism is the non-risk based approach of these instruments. Methodologies how one can incorporate direct as well as indirect losses within a probability based approach are presented
- âŠ