
Behavioral implications of shortlisting procedures
TYSON, CJ

 

 

 

 

 

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/7399

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/30697615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/jspui/handle/123456789/7399


Behavioral Implications of Shortlisting Procedures

Christopher J. Tyson∗

October 1, 2012

Abstract

We consider two-stage “shortlisting procedures” in which the menu of alternatives
is first pruned by some process or criterion and then a binary relation is maximized.
Given a particular first-stage process, our main result supplies a necessary and suf-
ficient condition for choice data to be consistent with a procedure in the designated
class. This result applies to any class of procedures with a certain lattice structure,
including the cases of “consideration filters,” “satisficing with salience effects,” and
“rational shortlist methods.” The theory avoids background assumptions made for
mathematical convenience; in this and other respects following Richter’s classical
analysis of preference-maximizing choice in the absence of shortlisting.

1. Introduction

Within the recent literature examining nonstandard models of choice behavior, several
contributions study what may be termed “shortlisting procedures.” These procedures
feature an initial stage in which the menu of available alternatives is pruned by some
process or criterion, followed by a second stage in which — as in the standard model — a
binary relation is optimized. Notable examples include Lleras et al.’s [13] “consideration
filter” and Masatlioglu et al.’s [17] “attention filter” procedures, Tyson’s [31] model of
“satisficing with salience effects,” and Manzini and Mariotti’s [14] “rational shortlist
methods” (all of which are examined in Section 3 below).

The two stages of a shortlisting procedure can have various interpretations depend-
ing on the purpose of the model and the extra assumptions imposed. For example, in
Lleras et al. [13] the first stage reflects cognitive constraints that make it infeasible for the
decision maker to consider all available options, while the second stage is ordinary pref-
erence maximization. In contrast, Tyson [31] introduces a form of imperfect preference
maximization at the first stage and uses the second to model differential salience (i.e.,
success in attracting attention) of the alternatives. While these two models are presented
in terms of individual decision making, the two stages of a shortlisting procedure may
be controlled by a group or by different agents (or groups). For example, a first-round
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election may be followed by a runoff, and a headhunting firm may preselect candidates
from which an employer will make the final choice.

As with any decision-theoretic model, several basic questions arise in the analysis of
a shortlisting procedure. Firstly, is the model falsifiable in the sense of ruling out some
logically-possible combinations of choices? Secondly, given falsifiability, what conditions
are necessary and sufficient for observed choice data to be consistent with the procedure?
And thirdly, given a consistent set of data, to what extent are the constituents of the
model “revealed” (à la Samuelson [21]) by the behavior?

For a shortlisting procedure to be falsifiable, the first stage must have some structure
that prevents it from being used to explain any pattern of choices ex post. In Lleras et
al. [13] “contraction consistency” of shortlisted alternatives is assumed; in Tyson [31] the
implied property is one of “strong expansion consistency”; and other procedures impose
their own restrictions on the shortlisting stage. Given some such structural assumption
that yields falsifiability, we may then turn to the characterization question: What axioms
identify those and only those data sets that could have been generated by a shortlisting
procedure of the hypothesized type?

Assume now that the binary relation optimized in the second stage of the procedure is
complete and transitive, like a standard preference relation. If the first-stage mechanism
were observable, the desired characterization would be supplied by Richter’s [19] classical
analysis of preference-maximizing choice over an arbitrary collection of menus. Indeed,
if we were able to observe the mapping from menus to sets of shortlisted alternatives,
then we could treat these shortlisting sets as surrogate menus and apply Richter’s result
directly.

With an unobservable first stage, however, the situation is more delicate. In this case
not only the second-stage relation but also each menu’s shortlisting set must be inferred
from choices, with a consequent ambiguity: If an alternative was available on but not
chosen from a particular menu, is this because it was not shortlisted or due to its being
eliminated in the second stage? Characterizing the procedure (more precisely, showing
sufficiency of proposed axioms) will require us to answer numerous questions of this sort
in such a way as to produce both a shortlisting stage with the specified structure and a
second-stage relation that is complete and transitive.1

In this paper we shall see that — despite the difficulties just described — the classical
Richterian analysis can be extended to characterize a range of shortlisting procedures.
We proceed abstractly, first defining the space Ξ of “selection functions” that return a
subset of each menu in a given domain. A class of shortlisting procedures can then be
identified with the set Σ ⊂ Ξ of selection functions permitted as the first stage of the
model. The consideration filter procedures of Lleras et al. thus comprise the set Σcf of
functions exhibiting contraction consistency (see Definition 3.1), while Tyson’s model of
satisficing with salience effects corresponds to the set Σse of functions exhibiting strong
expansion consistency (see Definition 3.8).

A revealed counterpart to the unobservable first-stage mechanism must then have two

1A consequence of the ambiguity observed here is that choice data consistent with a class of shortlisting
procedures (and with multi-stage models more generally) typically will not have a unique representation.
Asking to what extent model constituents are revealed by behavior is equivalent to asking if all valid
representations from the specified class of procedures can be guaranteed to agree in some respects.
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features. First, it must be in the postulated class Σ of procedures. And second, it must
be consistent with the data in the sense that any alternative chosen from a menu must
have been shortlisted. At the core of our theory is the following insight: If we can find a
selection function that is minimal, in an appropriate sense, among all functions with the
two properties just stated, then the Richterian machine will succeed in characterizing the
full two-stage model when the image of this “revealed shortlisting map” is used as the
collection of surrogate menus.

Our general theory of shortlisting procedures thus replaces the familiar Congruence
axiom (Condition 2.7), used by Richter to characterize preference maximization, with a
“Σ-Congruence” axiom (Condition 2.12) defined relative to a given class Σ of procedures
via the associated revealed shortlisting map. Our main result (Theorem 2.13) identifies
when the new condition is necessary and sufficient for choice data to be consistent with
a procedure in the class Σ. And since such equivalence holds for a range of classes, this
result can be described as a “meta-characterization” of shortlisting procedures.

It remains to determine when a suitable revealed shortlisting map can be found. To
this end we note first that when partially ordered by pointwise set inclusion, the space Ξ
of selection functions is a complete lattice of which those consistent with the data are a
complete sublattice. If, under the same partial order, a particular class Σ of shortlisting
procedures is also a complete sublattice, then it follows that the set of selection functions
possessing both properties stated above will have a greatest lower bound. And it is this
“minimal” function that can play the role of the revealed shortlisting map for the purpose
of stating and using Σ-Congruence. Lattice structure therefore emerges as the essential
attribute of a class of procedures for our meta-characterization result to be applicable.

To demonstrate the scope of our theory we apply it to a number of specific shortlisting
procedures, some present in the literature and others not. It is shown first that the space
of consideration filters has the necessary lattice structure, but that the space of attention
filters does not. Both the original model of satisficing with salience effects and a variant
procedure (leading to weak rather than strong expansion consistency of the shortlisting
stage) are seen to permit application of our results, as does the class of rational shortlist
methods. And finally, procedures in which the first-stage shortlisting map is “justified”
by a binary relation in the sense of Mariotti [16] provide yet another suitable case.2

In each application the power of our meta-characterization leaves us with very little
work to do. To confirm that the result applies, it suffices to verify the lattice structure
of the class of procedures in question. And the only other step needed to obtain a fully
operational characterization is to find an explicit expression for the revealed shortlisting
map, whose “official” definition (as the greatest lower bound of a set of selection functions)
may prove somewhat unwieldy in practice.

Our approach to the behavioral characterization of shortlisting procedures has three
distinct advantages. First, its abstract formulation allows us to study multiple classes of
procedures simultaneously. Second, since most elements of our theory have some analog
in the Richterian analysis, we remain on firm ground intuitively. In particular, we are

2In regard to these applications our focus will be on the formal problem of behavioral characterization.
Discussion of other aspects of each procedure — its intuitive basis, experimental support, usefulness for
economic modeling, and so on — can be found in the cited work (where applicable).
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able to avoid convoluted axioms and state our main result in terms of a single condition
that generalizes classical Congruence in a natural way. And third, the formal setting
in which we operate is completely devoid of background assumptions made strictly for
mathematical convenience.

This last advantage merits further elaboration. Among the background assumptions
we do not impose are:

• Finiteness of the universal set. Our universe of alternatives can have any cardinality,
and may or may not possess special (e.g., Euclidean) structure.

• Domain restrictions. The analysis accepts choice data from an arbitrary collection
of menus. There is no requirement that specific (e.g., two-element) menus be either
included or excluded.

• Single-valued choice. We encode behavior in choice functions defined so as to allow
for any mixture of single-valued and multi-valued output. A specialized version of
our meta-characterization (Theorem 2.16) covers the purely single-valued case, and
here the property is not a background assumption but rather a consequence of the
type of shortlisting procedure being characterized.

Needless to say, our theory inherits this high degree of generality from the foundation of
Richter [19] on which it builds.

The remainder of the paper is organized as follows. Section 2 describes the modeling
environment, discusses the revelation of both shortlisting and “preference” (though the
second-stage relation need not bear this interpretation), and states both the ordinary and
specialized forms of our meta-characterization result. Section 3 applies the theory to a
range of specific shortlisting procedures. All proofs are in the Appendix unless otherwise
indicated.

2. Theory

2.1. Preliminaries

Let X be a nonempty set of alternatives, and define the set X = {A : A ⊂ X} of menus
drawn from X. Fix a domain D ⊂ X\{∅}, and write XD for the set of maps from D to X.
Now define the space of selection functions on D by Ξ = {ξ ∈ XD : ∀A ∈ D ξ(A) ⊂ A}.
Given ξ1, ξ2 ∈ Ξ, write ξ1 ⊂ ξ2 if ∀A ∈ D we have ξ1(A) ⊂ ξ2(A). For any Ψ ⊂ Ξ
both

∧
Ψ =

⋂
ξ∈Ψξ and

∨
Ψ =

⋃
ξ∈Ψξ are in Ξ, and hence 〈Ξ,⊂〉 is a complete lattice.

In particular it is bounded, with greatest element > (the identity mapping) and least
element ⊥ (returning ∅ everywhere).

The decision maker’s behavior is encoded in a nonempty-valued choice function C ∈ Ξ.
That is to say, for each A ∈ D the associated choice set C(A) 6= ∅ contains those and
only those alternatives that can be observed as choices. We write ΞC = {ξ ∈ Ξ : C ⊂ ξ}
for the space of selection functions that include C pointwise. Observe that 〈ΞC ,⊂〉 is a
complete sublattice of 〈Ξ,⊂〉, with greatest element > and least element C.

4



A (binary) relation on X is any R ⊂ X ×X, with 〈x, y〉 ∈ R usually written as xRy.
Such a relation is a complete preorder if it is both complete (¬[xRy] only if yRx) and
transitive (xRyRz only if xRz), and a complete order if it is also antisymmetric (xRyRx
only if x = y). A relation is a strict partial order if it is both irreflexive (∀x ¬[xRx]) and
transitive, and a linear order if it is also weakly complete (x 6= y only if xRy or yRx).
Any complete relation is reflexive (∀x xRx). The transitive closure R∗ of a relation R
is defined by xR∗y if and only if for some integer n ≥ 2 there exist z1, . . . , zn ∈ X such
that x = z1Rz2R · · ·Rzn = y. Given A ∈ X, write G(A,R) = {x ∈ A : ∀y ∈ A xRy} for
the set of alternatives on menu A (if any) that are greatest with respect to R.

2.2. Classes of shortlisting procedures

The classical theory of choice — describing the behavior of an idealized rational decision
maker — can be expressed as the equivalence C = G(·,R), where R is the agent’s pref-
erence relation.3 The following definition generalizes this model to allow preselection of
alternatives by a shortlisting map before a binary relation is applied.

Definition 2.1. Given Σ ⊂ Ξ, the choice function is a shortlisting procedure of class Σ if
there exist a σ ∈ Σ and a relation R such that C = G(σ,R). Such a procedure is termed
CP- or CO-shortlisting accordingly as R is a complete preorder or a complete order.

The classical theory may then be recovered as the procedures of class Σid = {>}.
Suppose now that C is a shortlisting procedure of class Σ, but neither the mapping σ

nor the relation R is observable. Though we cannot see σ, we know that this function is
in Σ. Moreover, any alternative choosable from a menu must be on the relevant shortlist,
which is to say that σ ∈ ΞC . Forming the pointwise intersection of all selection functions
that share these two properties thus yields an underestimate of σ with respect to ⊂.

Definition 2.2. Given Σ ⊂ Ξ, let σ̂Σ =
∧

[Σ ∩ ΞC ] =
⋂
C⊂σ∈Σ σ.4

Since 〈ΞC ,⊂〉 is a complete lattice we have σ̂Σ ∈ ΞC , and plainly C ∈ Σ implies
σ̂Σ = C. Furthermore, it is immediate that C ⊂ σ ∈ Σ only if σ̂Σ ⊂ σ; this is the under-
estimation property. What is not clear from the definition is whether σ̂Σ ∈ Σ, a feature
that will be needed if we are to use this selection function as a revealed counterpart to the
unobserved shortlisting operator σ. The key to our analysis is the following observation,
which offers a sufficient condition for the desired property of σ̂Σ.

Proposition 2.3. Given Σ ⊂ Ξ, if 〈Σ,⊂〉 is a complete lattice then σ̂Σ ∈ Σ.

Applying our results (see Section 3) will amount to first verifying this lattice structure
and then finding a more explicit expression for σ̂Σ, the revealed shortlisting map.

To illustrate both the construction of σ̂Σ and the lattice property, we consider now a
specific class of shortlisting procedures.

3This theory was pioneered by Samuelson [21], Houthakker [11], Arrow [1], Richter [19, 20], Hans-
son [9], and Suzumura [27], among others. A concise summary appears in Bossert et al. [3].

4Observe that σ̂Σ 6=
∧
{
∧

Σ,
∧

ΞC} =
∧
{
∧

Σ, C}. For example, if A = {x, y}, D = {A}, Σ = {σ1, σ2},
σ1(A) = {x}, σ2(A) = {y}, and C(A) = {x}, then σ̂Σ(A) = [

∧
[Σ∩ΞC ]](A) = [

∧
{σ1}](A) = σ1(A) = {x},

whereas [
∧
{
∧

Σ, C}](A) = [
∧
{⊥, C}](A) = ⊥(A) = ∅.
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menu C Σmi ∩ ΞC σ̂Σmi

wxyz yz xyz wxyz wxyz wxyz xyz wxyz wxyz wxyz xyz
wxy x x x wx wx xy xy wxy wxy x
wx x x x x wx x x x wx x

Table 1: Construction of the revealed shortlisting map σ̂Σmi . Here X = wxyz, the domain
D contains the menus listed in the first column, the (unobserved) shortlisting map σ is
assumed to be in the set Σmi of monotone increasing selection functions, and the choice
function is as depicted in the second column. The third to the tenth column contain the
eight selection functions that are in Σmi and contain C, and are thus candidates to be σ.
The pointwise intersection of these eight functions (i.e., the meet or infimum of Σmi∩ΞC)
is the map σ̂Σmi , shown in the last column.

Definition 2.4. We call σ ∈ Ξ monotone increasing and write σ ∈ Σmi if ∀A,B ∈ D
such that A ⊂ B we have σ(A) ⊂ σ(B).

In other words, a map σ is monotone increasing if an alternative shortlisted from a menu
is necessarily shortlisted from any other menu that is larger in the sense of set inclusion.
Given a choice function, we can then compute the revealed shortlisting map σ̂Σmi , as in
the following example.

Example 2.5. Let X = wxyz and D = {wx,wxy, wxyz}, and let the choice function be
as depicted in the second column of Table 1.5 The third to the tenth column of the table
contain the eight selection functions that are monotone increasing and at the same time
include C. And the last column shows the pointwise intersection of these eight functions,
the revealed shortlisting map σ̂Σmi . For instance, σ̂Σmi(wxy) = x ∩ wx ∩ xy ∩ wxy = x.

To see that the class Σmi has the desired lattice structure, take any Ψ ⊂ Σmi and any
A,B ∈ D with A ⊂ B. What we need to show is that

∧
Ψ (i.e., the pointwise intersection

of the selection functions in Ψ) is itself a member of Σmi. But this is immediate, since

[
∧

Ψ](A) =
⋂
σ∈Ψ

σ(A) ⊂
⋂
σ∈Ψ

σ(B) = [
∧

Ψ](B)

in view of the fact that each member of Ψ is monotone increasing. Lattice structure will
be verified in a similar way in the context of the applications studied in Section 3.

Observe that in Example 2.5, for each menu B an alternative is in σ̂Σmi(B) if and only
if it is in C(A) for some menu A ⊂ B. This equivalence in fact holds for any X, D, and
C.6 And it is in this sense that we can hope to find “more explicit expressions” for the
revealed shortlisting maps that arise in applications of the theory.

5Note the multiplicative notation for enumerated sets.
6The proof, which is similar to that of Proposition 3.5 below, is left as an exercise.
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2.3. Revealed preference

We now wish to elicit second-stage “preference” comparisons from choice data, taking
into account that some alternatives may not have been shortlisted.7 To understand how
this can be done, it is useful first to recall how preferences are revealed in the classical
theory with no shortlisting stage.

Definition 2.6. Given x, y ∈ X, we write xRgy and say that x is revealed preferred to
y if ∃A ∈ D such that y ∈ A and x ∈ C(A). Moreover, when x[Rg]∗y we say that x is
indirectly revealed preferred to y.

Thus a preference is (directly) revealed when one alternative is choosable in the presence
of another, while a preference is indirectly revealed when two alternatives are linked by a
chain of revealed preferences. Using these definitions, Richter [19] (see also Suzumura [27])
characterizes the classical model with complete preorder preferences as follows.

Condition 2.7 (Congruence). Given x, y ∈ A ∈ D, if both x ∈ C(A) and y[Rg]∗x then
y ∈ C(A).

In words, if one alternative (y) is both available and indirectly revealed preferred to a
second alternative (x) that is choosable, then the first alternative must itself be choosable.

Theorem 2.8 (Richter [19, p. 639]). There exists a complete preorder R such that C =
G(·,R) if and only if Congruence holds.

The general shortlisting model is treated analogously. We begin by defining notions
of revealed “preference” relative to the output of the revealed shortlisting map σ̂Σ, which
as we know underestimates the true map σ.

Definition 2.9. Given Σ ⊂ Ξ and x, y ∈ X, we write xR̂Σy and say that x is Σ-revealed
preferred to y if ∃A ∈ D such that both y ∈ σ̂Σ(A) and x ∈ C(A). Moreover, when xR̂∗Σy
we say that x is indirectly Σ-revealed preferred to y.

Here the relation R̂Σ searches for situations in which one alternative is choosable in the
presence of another that has definitely been shortlisted — the latter qualification ensuring
that the two alternatives were indeed compared at the second stage.

Note that since σ̂Σid = >, we have R̂Σid = Rg in the classical special case. Furthermore,
Σ1 ∩ ΞC ⊂ Σ2 ∩ ΞC implies σ̂Σ2 ⊂ σ̂Σ1 and hence R̂Σ2 ⊂ R̂Σ1 . That is to say, the larger
is the class of admissible shortlisting maps, the fewer will be the comparisons that are
unambiguously revealed by a given set of choice data. This is because a more flexible
specification of σ can explain more of the observed behavior, leaving less that can be
used to make reliable deductions about R. Indeed, since σ̂Ξ = C, when the shortlisting
map is completely unrestricted all we can infer about the second-stage relation is that
two alternatives are “indifferent” if they appear together in the same choice set.

7Note once again that the second-stage relation need not indicate preference; rather, its interpretation
will depend on the shortlisting procedure considered. (In Section 3.2, for example, this relation is used
to encode the relative salience of the alternatives.) We speak of “revealed preference” in the general case
only for the sake of terminological simplicity.
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menu C σ̂Σmi ordered pairs in R̂Σmi

wxyz yz xyz 〈y, x〉, 〈y, y〉, 〈y, z〉, 〈z, x〉, 〈z, y〉, 〈z, z〉
wxy x x 〈x, x〉
wx x x 〈x, x〉

Table 2: Construction of the Σmi-revealed preference relation R̂Σmi . Here the first to the
third column reproduce the domain, the choice function C, and the revealed shortlisting
map σ̂Σmi displayed in Table 1. The last column shows the ordered pairs in R̂Σmi that can
be deduced from each menu.

The following lemma establishes two facts about Σ-revealed preferences. Firstly, it
states that any choosable alternative is greatest with respect to these preferences among
all options returned by σ̂Σ. And secondly, it confirms that these preferences are consistent
with the true R as long as the latter is a complete preorder and the true shortlisting map
is in Σ.

Lemma 2.10. Given Σ ⊂ Ξ: A. C ⊂ G(σ̂Σ, R̂Σ) ⊂ G(σ̂Σ, R̂
∗
Σ). B. For any σ ∈ Σ and

complete preorder R such that C ⊂ G(σ,R), we have R̂Σ ⊂ R̂∗Σ ⊂ R.

Observe that G(σ,R) ⊂ C is not a hypothesis of Lemma 2.10B.8 In addition, note
that R ⊂ R̂∗Σ is not a conclusion, meaning that R-comparisons need not be Σ-revealed,
even indirectly.

Example 2.11. In the setting of Example 2.5, the last column of Table 2 shows the
ordered pairs in the Σmi-revealed preference relation R̂Σmi that can be deduced from each
menu. For instance, since x ∈ σ̂Σmi(wxyz) and y ∈ C(wxyz), we can deduce that yR̂Σmix.
We have also C(wxyz) = yz ⊂ yz = G(xyz, R̂Σmi) = G(σ̂Σmi(wxyz), R̂Σmi), consistent
with Lemma 2.10A.

2.4. Meta-characterization results

We characterize CP-shortlisting procedures by modifying Richter’s Congruence axiom in
a natural way.

Condition 2.12 (Σ-Congruence). Given Σ ⊂ Ξ and x, y ∈ A ∈ D, if x ∈ C(A),
y ∈ σ̂Σ(A), and yR̂∗Σx then y ∈ C(A).

In words, if one alternative (y) is both revealed to have been shortlisted and indirectly Σ-
revealed preferred to a second alternative (x) that is choosable, then the first alternative
too must be choosable.

Observe that this new condition requires both y ∈ σ̂Σ(A) and yR̂∗Σx instead of simply
y[Rg]∗x, and that these stronger hypotheses make the axiom a weaker restriction on C.

8This inclusion closes the model, ensuring that if an alternative is both shortlisted and preference-
greatest among all shortlisted options, then it is not eliminated in some hypothetical additional stage.
Lemma 2.10B remains valid even if the model is not closed in this way.
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Of course, setting Σ = Σid yields the original Congruence axiom since — as already noted
— we have both σ̂Σid = > and R̂Σid = Rg. Moreover, when Σ1 ∩ ΞC ⊂ Σ2 ∩ ΞC it follows
that Σ1-Congruence implies Σ2-Congruence. And finally, the Ξ-Congruence axiom (which
leaves the shortlisting map unrestricted) is easily seen to be vacuous, since it includes
y ∈ σ̂Ξ(A) = C(A) as a hypothesis.

We are now in a position to state our main meta-characterization result.

Theorem 2.13. Given Σ ⊂ Ξ: A. If the choice function is a CP-shortlisting procedure
of class Σ, then Σ-Congruence holds. B. If Σ-Congruence holds and 〈Σ,⊂〉 is a complete
lattice, then the choice function is a CP-shortlisting procedure of class Σ.

Note that the first part of this theorem, establishing the necessity of Σ-Congruence, is a
simple corollary of Lemma 2.10B. Also, since we have already verified that

〈
Σmi,⊂

〉
is a

complete lattice, as a first application of the meta-characterization we can conclude that
C is a CP-shortlisting procedure of class Σmi if and only if Σmi-Congruence holds.

Example 2.14. In the setting of Examples 2.5 and 2.11, observe that Σmi-Congruence
holds. For instance, we have y ∈ C(wxyz), z ∈ σ̂Σmi(wxyz), and zR̂Σmiy, and in keeping
with the axiom we have z ∈ C(wxyz). Since in addition

〈
Σmi,⊂

〉
is a complete lattice,

by Theorem 2.13B we can conclude that C is a CP-shortlisting procedure of class Σmi.
Finally, note that from Table 2 it is apparent that C = G(σ̂Σmi , R̂Σmi) in this case.

The last observation in Example 2.14 is a special case of the equality C = G(σ̂Σ, R̂Σ),
which is valid in general when Σ-Congruence holds. However, this by itself is not enough
to establish that the choice function is a CP-shortlisting procedure of class Σ. First, we
need σ̂Σ ∈ Σ, and it is to ensure this inclusion that Theorem 2.13B requires 〈Σ,⊂〉 to be
a complete lattice. Second, we need the relation R̂Σ to be a complete preorder. But this
is not the case, either in general or even in Example 2.14. To get around this problem we
follow Richter’s proof of the classical Theorem 2.8, where a similar difficulty arises: At its
core, the Richterian method shows how we can replace the relation R̂Σ with a complete
preorder Q, while ensuring that the equality C = G(σ̂Σ,Q) holds after the replacement.
Our proof of Theorem 2.13B proceeds along these lines.

One strength of Theorem 2.13 is that it allows for choice sets with multiple elements.
In contrast, many results of this sort adopt the simplifying assumption that choice func-
tions are single-valued.

Condition 2.15 (Univalence). For each A ∈ D we have x, y ∈ C(A) only if x = y.

We can specialize our meta-characterization to this setting by balancing the imposition
of single-valued choice with a complete ordering (e.g., no-indifference) requirement on the
second-stage relation.

Theorem 2.16. Given Σ ⊂ Ξ: A. If the choice function is a CO-shortlisting procedure of
class Σ, then both Σ-Congruence and Univalence hold. B. If both Σ-Congruence and Uni-
valence hold and 〈Σ,⊂〉 is a complete lattice, then the choice function is a CO-shortlisting
procedure of class Σ.

Incidentally, Σ-Congruence and Univalence can be combined into a single axiom that
permits a simpler statement of Theorem 2.16.
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Condition 2.17 (Σ-Anticyclicity). Given Σ ⊂ Ξ and x, y ∈ X, we have xR̂∗ΣyR̂∗Σx only
if x = y.

This condition is clearly necessary when the preference relation R is antisymmetric, since
R̂∗Σ ⊂ R by Lemma 2.10B. It implies Σ-Congruence since x ∈ C(A), y ∈ σ̂Σ(A), and yR̂∗Σx
yield xR̂ΣyR̂∗Σx and hence y = x ∈ C(A). And it implies Univalence since x, y ∈ C(A)
only if x, y ∈ G(σ̂Σ(A), R̂∗Σ) by Lemma 2.10A, xR̂∗ΣyR̂∗Σx, and thus x = y. We conclude
the following:

Proposition 2.18. Given Σ ⊂ Ξ: A. If the choice function is a CO-shortlisting procedure
of class Σ, then Σ-Anticyclicity holds. B. If Σ-Anticyclicity holds and 〈Σ,⊂〉 is a complete
lattice, then the choice function is a CO-shortlisting procedure of class Σ.

When 〈Σ,⊂〉 is a complete lattice, a necessary and sufficient condition for the shortlisting
model with complete-order preferences is therefore provided by the requirement that all
R̂Σ-cycles be degenerate.9

3. Applications

3.1. Consideration and attention filters

Lleras et al. [13] investigate a procedure defined by the following class of shortlisting
maps, which imposes on σ a standard “contraction consistency” condition.10

Definition 3.1. We call σ ∈ Ξ a consideration (or contraction) filter and write σ ∈ Σcf

if ∀A,B ∈ D such that A ⊂ B we have σ(B) ∩ A ⊂ σ(A).

Here the decision maker is imagined to be cognitively constrained, the relative complexity
of different menus is assumed to be aligned with set inclusion, and σ(A) is interpreted as
the “consideration set” corresponding to menu A.11 Membership in Σcf is consistent with
a number of heuristic rules, such as considering only the n best alternatives according to
a given attribute, or considering only alternatives that are best according to at least one
attribute. Essentially the same model is studied by Spears [26] and Tyson [29, pp. 56–65].

Lleras et al. [13, pp. 5–8] describe their assumption on σ as motivated by marketing
research showing that decision makers can be overwhelmed by an abundance of options.
Citing Hauser and Wernerfelt [10], among others, they report that “as both the number
of options and the information about options increases, people consider fewer choices
and process a smaller fraction of the overall information available.” Thus in the present
context the “complexity” of a menu can incorporate the number of available alternatives,
the number of relevant attributes each alternative possesses, and the ease or difficulty of
perceiving these attributes.

It is straightforward to confirm that the theory in Section 2 can be applied to the case
of consideration filters.

9In particular, the classical model with complete-order preferences is characterized by the conjunction
of Congruence and Univalence, which amounts to the requirement that all Rg-cycles be degenerate.

10Early uses of this condition appear in Nash [18, p. 159], Chernoff [5, p. 429], and Sen [22, p. 384].
11For discussion and references relating to the concept of the consideration set, as well as an application

to industrial organization, see Eliaz and Spiegler [7].
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Proposition 3.2.
〈
Σcf ,⊂

〉
is a complete lattice.

Indeed, for Ψ ⊂ Σcf and A,B ∈ D such that A ⊂ B, we have

[
∧

Ψ](B) ∩ A = [
⋂
σ∈Ψσ(B)] ∩ A =

⋂
σ∈Ψ

[σ(B) ∩ A] ⊂
⋂
σ∈Ψ

σ(A) = [
∧

Ψ](A),

and hence
∧

Ψ ∈ Σcf as desired. Theorem 2.13 then yields a specialized characterization.

Corollary 3.3. The choice function is a CP-shortlisting procedure of class Σcf if and
only if Σcf-Congruence holds.

This finding may be compared with related results in Lleras et al. [13, p. 31], Spears [26,
p. 6], and Tyson [29, p. 64], all of which are less general due to one or more background
assumptions.

We can also give a more explicit expression for the revealed shortlisting map defined
by σ̂Σcf =

∧
[Σcf ∩ ΞC ].

Definition 3.4. Define ρ̂Σcf ∈ Ξ as follows: For each x ∈ A ∈ D, let x ∈ ρ̂Σcf (A) if and
only if ∃B ∈ D such that A ⊂ B and x ∈ C(B).

Proposition 3.5. σ̂Σcf = ρ̂Σcf .

In words, an alternative is revealed to be shortlisted from a particular menu if and only if
it is choosable from some weakly larger menu.12 This formulation substantially simplifies
construction of R̂Σcf and testing of Σcf-Congruence.

In a companion paper to [13], Masatlioglu et al. [17] impose a different restriction on
consideration sets. A variant of this property appears as Fishburn’s [8, p. 976] “Axiom 2,”
while Johnson and Dean [12, p. 58] refer to it as “Aizerman’s Axiom.”

Definition 3.6. We call σ ∈ Ξ an attention (or Aizerman) filter and write σ ∈ Σaf if
∀A,B ∈ D such that σ(B) ⊂ A ⊂ B we have σ(A) = σ(B).

The interpretation in [17] is that σ(B) contains those alternatives on menu B of which
the decision maker is aware, and that this set should remain unchanged whenever other
options are eliminated.13

Attention filters are an example of a class of selection functions that does not possess
the lattice structure needed to apply the methods of Section 2.

Example 3.7. Let X = xyz and D = {xy, xyz}, and let C be as depicted in the second
column of Table 3. The third to the seventh column of the table contain the five attention
filters that include C, and the last column shows the revealed shortlisting map σ̂Σaf . Here
σ̂Σaf (xyz) = y ⊂ xy ⊂ xyz but σ̂Σaf (xy) = x 6= y = σ̂Σaf (xyz), and hence σ̂Σaf /∈ Σaf .

It follows that Theorem 2.13B cannot be applied in this instance, though Σaf-Congruence
is of course still necessary for C to be a shortlisting procedure of class Σaf .

12Versions of this conclusion appear in [13, p. 14], [26, p. 11], and [29, p. 58].
13Under the assumptions that X is finite and D = X \ {∅}, the condition imposed in Definition 3.6 is

expressed in [17] as ∀B ∈ D [x ∈ B \ σ(B) =⇒ σ(B \ {x}) = σ(B)].
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menu C Σaf ∩ ΞC σ̂Σaf

xyz y yz xyz xy yz xyz y
xy x x x xy xy xy x

Table 3: Absence of lattice structure in the case of attention filters. Here X = xyz, the
domain contains the menus listed in the first column, the shortlisting map is assumed to
be an attention filter, and the choice function appears in the second column. The third to
the seventh column contain the candidate shortlisting maps, and the last column shows
the revealed shortlisting map σ̂Σaf . The latter, though defined as a pointwise intersection
of attention filters, is not itself an attention filter.

While Example 3.7 is enough to show the absence of the desired lattice structure, it
is instructive to see how an argument parallel to the proof of Proposition 3.2 fails in the
case of attention filters. Taking Ψ ⊂ Σaf and A,B ∈ D such that A ⊂ B, we would have

[
∧

Ψ](A) =
⋂
σ∈Ψ

σ(A) =
⋂
σ∈Ψ

σ(B) = [
∧

Ψ](B),

as desired, if it were the case that [
∨

Ψ](B) ⊂ A. But this is stronger than [
∧

Ψ](B) ⊂ A,
the condition under which we must show [

∧
Ψ](A) = [

∧
Ψ](B) to establish

∧
Ψ ∈ Σaf .14

And Example 3.7 confirms that there is no way to rescue this argument.

3.2. Satisficing with salience effects

Tyson [30] models bounded rationality by means of menu-dependent preferences that
can become decreasingly fine-grained as the complexity of the choice problem increases.
As in the consideration-set environment discussed in Section 3.1, relative complexity is
assumed to be aligned with set inclusion and can encompass the number, dimensionality,
and comprehensibility of the alternatives.

Formally, a relation system R = 〈RA〉A∈D encodes the agent’s “perceived preferences,”
with each RA a relation on A and choices generated via C(A) = G(A,R) = G(A,RA).
The interaction of complexity and cognition is captured by the nestedness condition on
R that ∀A,B ∈ D with A ⊂ B, and ∀x, y ∈ A, we have xRAy only if xRBy. Equivalently,
this can be expressed as ¬[xRBy] only if ¬[xRAy]; i.e., a strict preference for y over x
perceived in the larger choice problem B must also be perceived in the smaller problem
A.15 When the perceived preference system R is nested and each component RA is a
complete preorder, the resulting behavior is shown to be related to a form of “satisficing”
in the sense of Simon [25].

In [31], the nested-relation-system structure is augmented with a second stage that
allows the decision maker’s “pseudo-indifference” between RA-greatest alternatives to be

14Observe that it would make no difference if we weakened the Aizerman condition in Definition 3.6
by replacing its conclusion σ(A) = σ(B) with σ(A) ⊂ σ(B), or with the converse inclusion σ(A) ⊃ σ(B).
In either case the lattice property would continue to fail as long as the hypothesis σ(B) ⊂ A remains.

15In fact, perceived strict preference is the primitive notion in [30], and thus the definition of nestedness
directly parallels that of a consideration filter in terms of the perception of preferences/alternatives.
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broken by, e.g., their relative salience — a property that could be determined in some
contexts by non-informative advertising. Denoting the salience relation by S, choice sets
are thus determined as C(A) = G(G(A,R), S). Viewing the selection function G(·,R) as
a shortlisting map, this two-stage model is covered by our analytical framework, though
with a new interpretation under which it is the first rather than the second stage that
contains information about the agent’s preferences.

WhenR is nested and consists of complete preorders, the associated selection function
σ = G(·,R) exhibits “strong expansion consistency” (see [30, p. 56]).16

Definition 3.8. We call σ ∈ Ξ a strong-expansion filter and write σ ∈ Σse if ∀A,B ∈ D
such that A ⊂ B and σ(B) ∩ A 6= ∅ we have σ(A) ⊂ σ(B).

Like consideration and unlike attention filters, this class has the lattice structure needed
to apply our general theory.

Proposition 3.9. 〈Σse,⊂〉 is a complete lattice.

Corollary 3.10. The choice function is a CP-shortlisting procedure of class Σse if and
only if Σse-Congruence holds.

This corollary reproduces part, but not all, of the logical content of [31, pp. 10–12], where
a version of Σse-Congruence is referred to as “Weak Congruence.”

Once again it is useful to have an explicit expression for the revealed shortlisting map
σ̂Σse =

∧
[Σse∩ΞC ]. This is achieved in [31] by defining a relation systemR` that identifies

what are termed “revealed pseudo-preferences.”17

Definition 3.11. For x, y ∈ B ∈ D, we write xR`
By if ∃A ∈ D such that y ∈ A ⊂ B and

x ∈ C(A).

The alternatives revealed to be shortlisted from menu B are then those that are greatest
with respect to the transitive closure [R`

B]∗ of the relevant component of R`.

Proposition 3.12. σ̂Σse = G(·, [R`]∗).

Suppose now that we relax the assumption that the components of R are complete
preorders, while retaining the nestedness requirement. This enables the model of bounded
rationality with salience effects to incorporate other cognitive imperfections vis-à-vis the
classical model, such as incompleteness or intransitivity of perceived preferences. When
no special ordering assumptions are imposed on R, the shortlisting function σ = G(·,R)
need not be in Σse but will still exhibit “weak expansion consistency” (see [30, p. 60]).18

Definition 3.13. We call σ ∈ Ξ a weak-expansion filter and write σ ∈ Σwe if ∀B ⊂ D
such that

⋃
B∈BB ∈ D we have

⋂
B∈Bσ(B) ⊂ σ(

⋃
B∈BB).

We can confirm that this class of shortlisting maps has the desired structure.

16This property is due to Bordes [2, p. 452] and Sen [24, p. 66].
17Here the superscript onR` stands for “local,” whereas that on Rg (Definition 2.6) stands for “global.”
18This property first appeared in Sen [23, p. 314].
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Proposition 3.14. 〈Σwe,⊂〉 is a complete lattice.

Corollary 3.15. The choice function is a CP-shortlisting procedure of class Σwe if and
only if Σwe-Congruence holds.

Note that this case is not considered in [31].
It is simple to show that Σwe ∩ ΞC ⊃ Σse ∩ ΞC , and therefore we know a priori that

σ̂Σwe ⊂ σ̂Σse = G(·, [R`]∗).19 Indeed, to find the revealed shortlisting map in this instance
we need only drop the transitive closure operator.

Proposition 3.16. σ̂Σwe = G(·,R`).

3.3. Rational shortlist methods

We turn now to shortlisting maps generated by ordinary binary relations, as opposed to
the relation systems used in Section 3.2.

Manzini and Mariotti’s [14] “rational shortlist methods” involve a primary relation Q
used to eliminate alternatives before application of a secondary relation R. The choice set
associated with menu A is thus determined as C(A) = G(G(A,Q),R), and the shortlisting
map has the simple form G(·,Q). The primary and secondary relations are independent of
each other and can have various interpretations depending on the context. For example,
Manzini and Mariotti imagine “a cautious investor comparing alternative portfolios [who]
first eliminates those that are too risky relative to others available, and then ranks the
surviving ones on the basis of expected returns.”20

The properties of a shortlisting map expressible as σ = G(·,Q) are well known. Under
the full-domain assumption D = X \ {∅}, a map is of this form if and only if it is in the
class Σcf ∩ Σwe of selection functions exhibiting both contraction and weak-expansion
consistency (see Sen [23, p. 314]).21 These properties can be merged and strengthened
to yield the following requirement, which is necessary and sufficient with an arbitrary
domain (and thus equivalent to Richter’s [20, p. 33] “V-Axiom”).

Definition 3.17. We call σ ∈ Ξ an extraction filter and write σ ∈ Σef if ∀A ∈ D and
B ⊂ D such that A ⊂

⋃
B∈BB we have [

⋂
B∈Bσ(B)] ∩ A ⊂ σ(A).

From the statement of this property it is apparent both that Σef ⊂ Σcf ∩ Σwe in general
and that this inclusion holds as an equality in the full-domain case (where we know for
certain that

⋃
B∈BB ∈ D).

As usual, our first task is to check the lattice structure of the class of relation-generated
shortlists.

Proposition 3.18.
〈
Σef ,⊂

〉
is a complete lattice.

Corollary 3.19. The choice function is a CP-shortlisting procedure of class Σef if and
only if Σef-Congruence holds.

19Despite the “strong” and “weak” nomenclature, it is technically not true that Σse ⊂ Σwe. To ensure
that σ ∈ Σse is also in Σwe we need this function to be nonempty-valued, for which σ ∈ ΞC is sufficient.

20See also the related models in Cherepanov et al. [4] and Manzini and Mariotti [15].
21Stronger consistency requirements would be implied if we were to impose ordering properties on Q

such as completeness or transitivity. (On this point, see Section 3.5.)
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And it is straightforward to verify that this axiom implies the two conditions identified
by Manzini and Mariotti in the full-domain context.22

Condition 3.20 (Generalized Weak WARP). Given A,B,D ∈ D and x, y ∈ A such that
A ⊂ B ⊂ D, if x ∈ C(A) ∩ C(D) and y ∈ C(B) then x ∈ C(B).

Condition 3.21 (Weak Expansion). C ∈ Σwe.

Proposition 3.22. Σef-Congruence implies Generalized Weak WARP and Weak Expan-
sion.

Since Σef ⊂ Σwe we know that σ̂Σef ⊃ σ̂Σwe = G(·,R`). And in fact the revealed short-
listing map for extraction filters simply replaces the revealed pseudo-preference system
R` with the traditional revealed preference relation Rg.

Proposition 3.23. σ̂Σef = G(·,Rg).

3.4. Justified shortlists

Yet another application is to shortlists generated by binary relations via a stronger form
of maximization. In Mariotti’s [16, p. 405] terminology, a selection function ξ is justified
by a relation Q if ξ = G(·,Q) and ∀x, y ∈ A ∈ D with x ∈ ξ(A) and yQx we have
y ∈ ξ(A).23 Thus justification requires not only that the selected alternatives be those
that are greatest with respect to Q, but also that no available but unselected alternative
bear the relation Q to any selected one.

When the shortlisting map σ is justified by a relation it is clearly in the class Σef , and
hence also in Σcf ∩Σwe. Clark [6, p. 488] and Mariotti [16, p. 405] determine the implied
restriction on σ more precisely, showing that a selection function on an arbitrary domain
is justified if and only if it satisfies the familiar “weak axiom of revealed preference.”24

Definition 3.24. We call σ ∈ Ξ a weak-axiom filter and write σ ∈ Σwa if ∀A,B ∈ D
such that σ(B) ∩ A 6= ∅ we have σ(A) ∩B ⊂ σ(B).

Here adding the hypothesis A ⊂ B would yield the definition of a strong-expansion filter,
so we have Σwa ⊂ Σse. Moreover, the required lattice structure is present with or without
this hypothesis.

Proposition 3.25. 〈Σwa,⊂〉 is a complete lattice.

Corollary 3.26. The choice function is a CP-shortlisting procedure of class Σwa if and
only if Σwa-Congruence holds.

The revealed shortlisting map σ̂Σwa =
∧

[Σwa ∩ ΞC ] can be constructed as the union
of an increasing (with respect to ⊂) sequence of selection functions formed from C using
the weak-axiom property in Definition 3.24. The details of this construction — contained
in an earlier version of the present paper — are omitted for the sake of brevity.

22More precisely, Manzini and Mariotti specify “Weak WARP,” a version of Condition 3.20 for single-
valued choice functions, together with weak expansion consistency for pairs of sets rather than arbitrary
collections as in Condition 3.21. In each case our version of the condition is slightly more general.

23Clark [6] refers to this relationship as “strict rationalization.”
24This is Arrow’s [1, p. 123] condition “C5,” a generalization of Samuelson’s [21, p. 65] “Postulate III.”
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3.5. Congruent shortlists and lexicographic preferences

As mentioned above in Section 3.3, an extraction filter is a shortlisting map generated by
a binary relation that need not possess any particular ordering properties. Suppose now
that we require this “primary” relation to be complete and transitive. The associated
class of CP-shortlisting procedures will then contain choice functions of the form C =
G(G(·,Q),R) with Q and R both complete preorders. In view of Theorem 2.8, the map
σ = G(·,Q) will in this case satisfy the Richterian congruence axiom (stated in terms of
the choice function as Condition 2.7). This requirement can be expressed as follows.

Definition 3.27. Given ξ ∈ Ξ and x, y ∈ X, we write xJξKy if ∃A ∈ D such that y ∈ A
and x ∈ ξ(A).

Definition 3.28. We call σ ∈ Ξ a strong-axiom filter and write σ ∈ Σsa if ∀x, y ∈ A ∈ D
such that x ∈ σ(A) and yJσK∗x we have y ∈ σ(A).

We then have that JCK = Rg, and moreover that C ∈ Σsa restates Congruence.
There is no difficulty in showing that Theorem 2.13 applies to the class of strong-axiom

filters.

Proposition 3.29. 〈Σsa,⊂〉 is a complete lattice.

Corollary 3.30. The choice function is a CP-shortlisting procedure of class Σsa if and
only if Σsa-Congruence holds.

However, the choice functions characterized in this way are not a new subset of the space
of selection functions; rather, they are precisely those that are consistent with the classical
model.

Proposition 3.31. Σsa-Congruence is logically equivalent to Congruence.

In contrast to our earlier applications, Corollary 3.30 is therefore not a true generalization
of Theorem 2.8.

Proposition 3.31 establishes that in terms of behavioral implications, imposing σ ∈ Σsa

collapses the general shortlisting model to its classical (no-shortlisting) special case. The
reason for this is easily appreciated: When Q and R are both complete preorders, we
have G(G(·,Q),R) = G(·,L) for L defined as the lexicographic composition of Q and R.25

Since in this case L itself will be a complete preorder, it follows that C = G(·,L) will
satisfy Congruence. In this regard Proposition 3.31 can be viewed as a sanity check on
our analytical framework.

While the Σid and Σsa classes of procedures are behaviorally equivalent, they do not
share the same revealed shortlisting map. On the one hand it is immediate that σ̂Σid = >,
while on the other we can show the following.

Proposition 3.32. σ̂Σsa = G(·, [Rg]∗).

But this difference is immaterial, reflecting an arbitrary choice of how to explain classical
behavior using a two-stage model with superfluous degrees of freedom.

25That is to say, for L defined by xLy if and only if xQy and either xRy or ¬[yQx].
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∪

∪

Figure 1: Summary of applications. Depicted are (left panel) logical relationships among
the axioms that characterize several classes of shortlisting procedures, together with (right
panel) inclusions among the associated revealed shortlisting maps.

3.6. Summary of applications

A summary of our applications of Theorem 2.13 appears in Figure 1. Here the left panel
shows logical relationships among the axioms characterizing shortlisting procedures of
six classes: Σcf , with σ satisfying contraction consistency; Σse, with σ = G(·,R) and R
a nested system of complete preorders; Σwe, with σ = G(·,R) and R a nested relation
system; Σef , with σ = G(·,Q); Σwa, with σ justified by Q; and Σsa, with σ = G(·,Q)
and Q a complete and transitive relation. The trivial class Σid = {>}, which prohibits
meaningful shortlisting and thus yields the standard model, is included for the sake of
comparison. Σwa-Congruence implying Σef-Congruence, for example, reflects the fact that
σ can be justified by Q only if we have σ = G(·,Q).

The right panel in Figure 1 shows pointwise inclusions among the revealed shortlisting
maps associated with our various classes of procedures. For example, we have σ̂Σwa ⊃ σ̂Σef

(a consequence of Σwa ⊂ Σef), leading to R̂Σwa ⊃ R̂Σef and the aforementioned implication
between congruence conditions. The figure also records explicit expressions for several of
the revealed shortlisting maps; for example, σ̂Σef =

∧
[Σef ∩ ΞC ] can be expressed more

simply as G(·,Rg). The number of the relevant Proposition is shown above each nontrivial
equality.

Finally, recall that for each application an analogous characterization for single-valued
choice functions follows from Theorem 2.16.

A. Appendix

Proof of Proposition 2.3. The assertion follows immediately from the definition of a com-
plete lattice.

Proof of Lemma 2.10. A. Given A ∈ D, let x ∈ C(A) ⊂ σ̂Σ(A). For each y ∈ σ̂Σ(A) we
have xR̂Σy, and so x ∈ G(σ̂Σ(A), R̂Σ). The second inclusion is immediate.

B. The first inclusion is immediate. Given x, y ∈ X, if xR̂Σy then ∃A ∈ D such that
y ∈ σ̂Σ(A) and x ∈ C(A) ⊂ G(σ(A),R). Since C ⊂ σ ∈ Σ, we have σ̂Σ ⊂ σ and thus
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y ∈ σ(A). But then xRy, so R̂Σ ⊂ R. Hence R̂∗Σ ⊂ R∗ ⊂ R since R is transitive.

Lemma A.1 (extracted from Richter [19, pp. 639–640]). For any reflexive relation Q on
X there exists a complete preorder S ⊃ Q∗ such that ∀x, y ∈ X we have xSyQ∗x only if
xQ∗y.

Proof of Lemma A.1. Since Q is reflexive, the asymmetric part T of Q∗ is a strict partial
order and the symmetric part E of Q∗ is a congruence with respect to T. Write φ(x) for
the E-equivalence class containing a given x ∈ X, and define a strict partial order � on
Φ = {φ(x) : x ∈ X} by φ(x)� φ(y) if and only if xTy. By Szpilrajn’s Theorem [28] we
can then embed� in a linear order ≫ on Φ, proceeding to define the complete preorder
S by xSy if and only if ¬[φ(y) ≫ φ(x)]. It follows that xQ∗y only if either φ(x)� φ(y) or
φ(x) = φ(y). But then φ(x) ≫ φ(y) or φ(x) = φ(y), and in either case ¬[φ(y) ≫ φ(x)]
and xSy. Hence Q∗ ⊂ S. Moreover, given x, y ∈ X with xSyQ∗x, we have ¬[φ(y)� φ(x)]
and so ¬[yTx]. But since yQ∗x, this implies that xQ∗y.

Proof of Theorem 2.13. A. Let C = G(σ,R) for some σ ∈ Σ and complete preorder R.
Given x, y ∈ A ∈ D such that x ∈ C(A) = G(σ(A),R), y ∈ σ̂Σ(A) ⊂ σ(A), and yR̂∗Σx, we
have yRx by Lemma 2.10B. It follows that y ∈ G(σ(A),R) = C(A) since R is a complete
preorder, and so Σ-Congruence holds.

B. Suppose Σ-Congruence holds and 〈Σ,⊂〉 is a complete lattice. Define Q by xQy
if and only if xR̂Σy or x = y; so that R̂Σ ⊂ Q. Now define S by xSy if and only if xR̂∗Σy,
¬[yR̂∗Σx], or x = y. Observe that C ⊂ G(σ̂Σ, R̂

∗
Σ) ⊂ G(σ̂Σ,Q

∗), using Lemma 2.10A.
Given x ∈ A ∈ D, if x ∈ σ̂Σ(A) \ C(A) then ∃y ∈ C(A) ⊂ G(σ̂Σ(A), R̂∗Σ), so both yR̂∗Σx
and y 6= x. We have also ¬[xR̂∗Σy] by Σ-Congruence, so ¬[xSy] and x /∈ G(σ̂Σ(A), S). It
follows that G(σ̂Σ, S) ⊂ C by contraposition. Since Q is reflexive, by Lemma A.1 there
exists a complete preorder R ⊃ Q∗ with R ⊂ S. But then C ⊂ G(σ̂Σ,Q

∗) ⊂ G(σ̂Σ,R) ⊂
G(σ̂Σ, S) ⊂ C and so C = G(σ̂Σ,R), with σ̂Σ ∈ Σ by Proposition 2.3 and R a complete
preorder.

Proof of Theorem 2.16. A. Let C = G(σ,R) for some σ ∈ Σ and complete order R. Since
any complete order is a complete preorder, Σ-Congruence then holds by Theorem 2.13.
Moreover, if for some A ∈ D we have x, y ∈ C(A) = G(σ(A),R), then xRyRx and so
x = y since R is a complete order. Hence Univalence holds.

B. Suppose that both Σ-Congruence and Univalence hold and 〈Σ,⊂〉 is a complete
lattice. By Theorem 2.13 there exist a σ ∈ Σ and a complete preorder Q such that
C = G(σ,Q). Define S by xSy if and only if xQy and ¬[yQx]. Then S is a strict partial
order, and it follows by Szpilrajn’s [28] Embedding Theorem that there exists a linear
order T ⊃ S. Now define R by xRy if and only if xTy or x = y, so that T ⊂ R, and
observe that R is a complete order. Given x ∈ A ∈ D, if x ∈ C(A) = G(σ(A),Q) then
for all y ∈ σ(A) such that y 6= x we have y /∈ C(A) by Univalence. It follows that xSy,
xTy, and xRy, and thus x ∈ G(σ(A),R) since R is reflexive. Hence C ⊂ G(σ,R). To
confirm the reverse inclusion, let x ∈ A ∈ D be such that x ∈ G(σ(A),R) and take any
y ∈ σ(A) such that y 6= x. We then have xRy, ¬[yRx] since R is a complete order,
¬[yTx], and ¬[ySx]. But this implies that xQy since Q is a complete preorder, and so
x ∈ G(σ(A),Q) = C(A). Hence G(σ,R) ⊂ C and C = G(σ,R), with σ ∈ Σ and R a
complete order.
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Proof of Proposition 2.18. In text.

Proof of Proposition 3.2. In text.

Proof of Proposition 3.5. Clearly ρ̂Σcf ∈ Σcf ∩ ΞC , so that σ̂Σcf ⊂ ρ̂Σcf . Moreover, for any
σ ∈ Σcf ∩ ΞC and x ∈ A ∈ D we have x ∈ ρ̂Σcf (A) only if ∃B ∈ D such that A ⊂ B and
x ∈ C(B). But then x ∈ σ(B) since σ ∈ ΞC , whereupon x ∈ σ(A) since σ ∈ Σcf . Thus
ρ̂Σcf ⊂ σ, and it follows that ρ̂Σcf ⊂ σ̂Σcf . Hence σ̂Σcf = ρ̂Σcf .

Proof of Proposition 3.9. Given Ψ ⊂ Σse and A,B ∈ D such that A ⊂ B and

∅ 6= [
∧

Ψ](B) ∩ A = [
⋂
σ∈Ψσ(B)] ∩ A =

⋂
σ∈Ψ

[σ(B) ∩ A],

for each σ ∈ Ψ we have σ(B) ∩ A 6= ∅. But then

[
∧

Ψ](A) =
⋂
σ∈Ψ

σ(A) ⊂
⋂
σ∈Ψ

σ(B) = [
∧

Ψ](B).

Hence
∧

Ψ ∈ Σse.

Proof of Proposition 3.12. Clearly C ⊂ G(·,R`) ⊂ G(·, [R`]∗), and so G(·, [R`]∗) ∈ ΞC .
Moreover, given A,B ∈ D such that A ⊂ B and G(B, [R`]∗) ∩ A 6= ∅, we have that
∃y ∈ G(B, [R`]∗) ∩ A. It follows that x ∈ G(A, [R`]∗) only if x[R`

A]∗y, and so x[R`
B]∗y

since [R`]∗ is nested. But then x ∈ G(B, [R`]∗), so G(A, [R`]∗) ⊂ G(B, [R`]∗). Hence we
can conclude that G(·, [R`]∗) ∈ Σse, and therefore σ̂Σse ⊂ G(·, [R`]∗).

Given σ ∈ Σse ∩ ΞC and x ∈ B ∈ D, let x ∈ G(B, [R`]∗). For any y ∈ C(B), we have
y ∈ σ(B) since σ ∈ ΞC . Moreover, there exist an integer n ≥ 2 and z1, . . . , zn ∈ B such
that x = z1R`

Bz2R`
B · · ·R`

Bzn = y, and we have zn = y ∈ σ(B). Now for k ∈ {1, . . . , n−1},
suppose zk+1 ∈ σ(B). Since zkR

`
Bzk+1, we have that ∃Ak ∈ D such that zk+1 ∈ Ak ⊂ B

and zk ∈ C(Ak) ⊂ σ(Ak). But then zk ∈ σ(B) since σ ∈ Σse. By induction it follows
that x = z1 ∈ σ(B), and hence G(·, [R`]∗) ⊂ σ. Therefore G(·, [R`]∗) ⊂ σ̂Σse , and so
σ̂Σse = G(·, [R`]∗).

Proof of Proposition 3.14. Given Ψ ⊂ Σwe and B ⊂ D such that
⋃
B∈BB ∈ D, we have⋂

B∈B

[
∧

Ψ](B) =
⋂
B∈B

⋂
σ∈Ψ

σ(B) =
⋂
σ∈Ψ

⋂
B∈B

σ(B) ⊂
⋂
σ∈Ψ

σ(
⋃
B∈BB) = [

∧
Ψ](
⋃
B∈BB).

Hence
∧

Ψ ∈ Σwe.

Proof of Proposition 3.16. Clearly C ⊂ G(·,R`), and so G(·,R`) ∈ ΞC . Moreover, given
B ⊂ D with

⋃
B∈BB ∈ D, if x ∈

⋂
B∈BG(B,R`) then ∀y ∈ B ∈ B we have xR`

By. It
follows that ∀y ∈

⋃
B∈BB we have xR`

[∪B∈BB]y since R` is nested. But this is equivalent

to x ∈ G(
⋃
B∈BB,R`), so

⋂
B∈BG(B,R`) ⊂ G(

⋃
B∈BB,R`). Hence G(·,R`) ∈ Σwe, and

therefore σ̂Σwe ⊂ G(·,R`).
Given σ ∈ Σwe ∩ΞC and x ∈ B ∈ D, let x ∈ G(B,R`). For any y ∈ B we have xR`

By,
and so ∃Ay ∈ D such that y ∈ Ay ⊂ B and x ∈ C(Ay) ⊂ σ(Ay) since σ ∈ ΞC . But then⋃
y∈BAy = B ∈ D, and since σ ∈ Σwe it follows that x ∈ σ(B). Hence G(·,R`) ⊂ σ, so

we have G(·,R`) ⊂ σ̂Σwe and σ̂Σwe = G(·,R`).
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Proof of Proposition 3.18. Given Ψ ⊂ Σef , A ∈ D, and B ⊂ D such that A ⊂
⋃
B∈BB,

we have

[
⋂
B∈B[

∧
Ψ](B)] ∩ A = [

⋂
B∈B

⋂
σ∈Ψσ(B)] ∩ A =⋂

σ∈Ψ

[
⋂
B∈Bσ(B)] ∩ A ⊂

⋂
σ∈Ψ

σ(A) = [
∧

Ψ](A).

Hence
∧

Ψ ∈ Σef .

Proof of Proposition 3.22. Let Σef-Congruence hold. Given A,B,D ∈ D and x, y ∈ A
such that A ⊂ B ⊂ D, let x ∈ C(A) ∩ C(D) and y ∈ C(B). Then both x ∈ σ̂Σef (D) ∩B
and y ∈ σ̂Σef (B) ∩ A, and so since σ̂Σef ∈ Σef we have x ∈ σ̂Σef (B) and y ∈ σ̂Σef (A),
respectively. But x ∈ C(A) then implies that xR̂Σefy, and since y ∈ C(B) it follows that
x ∈ C(B) by Σef-Congruence. Hence Generalized Weak WARP holds.

Now, given B ⊂ D such that
⋃
B∈BB ∈ D, let x ∈

⋂
B∈BC(B). Then ∃y ∈ C(

⋃
B∈BB)

and A ∈ B such that y ∈ A and x ∈ C(A). We have also y ∈ σ̂Σef (
⋃
B∈BB), so y ∈ σ̂Σef (A)

since σ̂Σef ∈ Σef . It follows that xR̂Σefy. Moreover, we have x ∈
⋂
B∈Bσ̂Σef (B) and hence

x ∈ σ̂Σef (
⋃
B∈BB), again since σ̂Σef ∈ Σef . But then x ∈ C(

⋃
B∈BB) by Σef-Congruence,

so Weak Expansion holds.

Proof of Proposition 3.23. Clearly C ⊂ G(·,Rg), and so G(·,Rg) ∈ ΞC . Moreover, given
x ∈ A ∈ D and B ⊂ D such that A ⊂

⋃
B∈BB, if x ∈

⋂
B∈BG(B,Rg) then ∀y ∈ A we

have xRgy. Hence x ∈ G(A,Rg), so [
⋂
B∈BG(B,Rg)] ∩ A ⊂ G(A,Rg). It follows that

G(·,Rg) ∈ Σef , and therefore σ̂Σef ⊂ G(·,Rg).
Given σ ∈ Σef ∩ ΞC and x ∈ A ∈ D, let x ∈ G(A,Rg). For any y ∈ A we have xRgy,

and so ∃By ∈ D such that y ∈ By and x ∈ C(By) ⊂ σ(By) since σ ∈ ΞC . We then have
A ⊂

⋃
y∈ABy, and since σ ∈ Σef it follows that x ∈ σ(A). Hence G(·,Rg) ⊂ σ, so we have

G(·,Rg) ⊂ σ̂Σef and σ̂Σef = G(·,Rg).

Proof of Proposition 3.25. Given Ψ ⊂ Σwa and A,B ∈ D such that

∅ 6= [
∧

Ψ](B) ∩ A = [
⋂
σ∈Ψσ(B)] ∩ A =

⋂
σ∈Ψ

[σ(B) ∩ A],

for each σ ∈ Ψ we have σ(B) ∩ A 6= ∅. But then

[
∧

Ψ](A) ∩B = [
⋂
σ∈Ψσ(A)] ∩B =

⋂
σ∈Ψ

[σ(A) ∩B] ⊂
⋂
σ∈Ψ

σ(B) = [
∧

Ψ](B).

Hence
∧

Ψ ∈ Σwa.

Proof of Proposition 3.29. Given Ψ ⊂ Σsa and x, y ∈ A ∈ D such that x ∈ [
∧

Ψ](A) =⋂
σ∈Ψσ(A) and yJ∧ΨK∗x, there exist an integer n ≥ 2 and z1, . . . , zn ∈ X such that

y = z1J∧ΨKz2J∧ΨK · · · J∧ΨKzn = x. Then for k ∈ {1, . . . , n − 1} there exists a Bk ∈ D
such that zk+1 ∈ Bk and zk ∈ [

∧
Ψ](Bk) =

⋂
σ∈Ψσ(Bk). It follows that ∀σ ∈ Ψ we have

zkJσKzk+1, and thus yJσK∗x and y ∈ σ(A). But then y ∈
⋂
σ∈Ψσ(A) = [

∧
Ψ](A). Hence∧

Ψ ∈ Σsa.
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Proof of Proposition 3.31. It is immediate that Congruence implies Σsa-Congruence. To
show the converse, suppose that Σsa-Congruence holds and let x, y ∈ A ∈ D be such
that x ∈ C(A) and y[Rg]∗x. Since x ∈ G(A, [Rg]∗), we have y ∈ G(A, [Rg]∗) = σ̂Σsa(A).
Moreover, there exist an integer n ≥ 2 and z1, . . . , zn ∈ X with y = z1Rgz2Rg · · ·Rgzn =
x. For k ∈ {1, . . . , n − 1} there exists a Bk ∈ D such that zk+1 ∈ Bk and zk ∈ C(Bk).
Since zk+1[Rg]∗xRgy[Rg]∗zk ∈ G(Bk, [R

g]∗), we then have zk+1 ∈ G(Bk, [R
g]∗) = σ̂Σsa(Bk)

and so zkR̂Σsazk+1. It follows that yR̂∗Σsax, and therefore y ∈ C(A) by Σsa-Congruence.
Hence Congruence holds.

Proof of Proposition 3.32. Clearly C ⊂ G(·,Rg) ⊂ G(·, [Rg]∗), and so G(·, [Rg]∗) ∈ ΞC .
Moreover, given x, y ∈ A ∈ D such that x ∈ G(A, [Rg]∗) and yJG(·, [Rg]∗)K∗x, there exist
an integer n ≥ 2 and z1, . . . , zn ∈ X such that y = z1JG(·, [Rg]∗)K · · · JG(·, [Rg]∗)Kzn = x.
It follows that for k ∈ {1, . . . , n− 1} there exists a Bk ∈ D such that zk+1 ∈ Bk and zk ∈
G(Bk, [R

g]∗). But then zk[R
g]∗zk+1, and thus y[Rg]∗x ∈ G(A, [Rg]∗) and y ∈ G(A, [Rg]∗).

Hence we can conclude that G(·, [Rg]∗) ∈ Σsa, and therefore σ̂Σsa ⊂ G(·, [Rg]∗).
Given σ ∈ Σsa ∩ ΞC and x ∈ A ∈ D, let x ∈ G(A, [Rg]∗). For any y ∈ C(A), we have

y ∈ σ(A) since σ ∈ ΞC . Moreover, there exist an integer n ≥ 2 and z1, . . . , zn ∈ X such
that x = z1Rgz2Rg · · ·Rgzn = y. Now for k ∈ {1, . . . , n − 1} there exists a Bk ∈ D such
that zk+1 ∈ Bk and zk ∈ C(Bk) ⊂ σ(Bk). But then zkJσKzk+1, and thus xJσK∗y. It follows
that x ∈ σ(A) since σ ∈ Σsa, and hence G(·, [Rg]∗) ⊂ σ. Therefore G(·, [Rg]∗) ⊂ σ̂Σsa , and
so σ̂Σsa = G(·, [Rg]∗).
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