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Abstract. We present the first combinatorial polynomial time algo-
rithm for computing the equilibrium of the Arrow-Debreu market model
with linear utilities. Our algorithm views the allocation of money as flows
and iteratively improves the balanced flow as in [Devanur et al. 2008]
for Fisher’s model. We develop new methods to carefully deal with the
flows and surpluses during price adjustments. Our algorithm performs
O(n6 log(nU)) maximum flow computations, where n is the number of
persons and U is the maximum integer utility. The flows have to be
presented as numbers of bitlength O(n log(nU)) to guarantee an exact
solution. Previously, [Jain 2007, Ye 2007] have given polynomial time al-
gorithms for this problem, which are based on solving convex programs
using the ellipsoid algorithm and the interior-point method.

1 Introduction

We provide the first combinatorial polynomial algorithm for computing the
model of economic markets formulated by Walras in 1874 [15]. In this model,
every person has an initial distribution of some goods and a utility function
of all goods. The market clears at a set of prices if each person sells its initial
goods and then uses its entire revenue to buy a bundle of goods with maximum
utility. We want to find the market equilibrium in which every good is assigned
a price so that the market clears. In 1954, Arrow and Debreu [2] proved that the
market equilibrium always exists if the utility functions are concave. The result
is prominently mentioned in their Nobel prize laudation and the market is usu-
ally referred to as the “Arrow-Debreu market”. However, their proof is based on
Kakutani’s fixed-point theorem and hence non-constructive. Since then, many
algorithmic results studied the linear version of this model, that is, all utility
functions are linear.

The first polynomial time algorithm for the linear Arrow-Debreu model is
given by Jain et al [12]; it is based on solving a convex program using the
ellipsoid algorithm. Another polynomial-time algorithm was given by Ye [16]; it
is based on solving a convex program using the interior-point method. The latter
algorithm has a time bound of O(n4 logU) which is faster than our algorithm.
However, our algorithm has the advantage of being quite simple (see Figure 1
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for a complete listing) and combinatorial, and hence, gives additional insight in
the nature of the problem. We obtain equilibrium prices by a simple procedure
that iteratively adjusts prices and allocations in a carefully chosen, but intuitive
manner. Previous to our algorithms, combinatorial algorithms were only known
for computing an approximate equilibrium for the Arrow-Debreu model. Devanur
and Vazirani [8] gave an approximation scheme for computing the Arrow-Debreu

model with running time O(n
4

ǫ log n
ǫ ), improving [13]. Recently, Ghiyasvand and

Orlin [11] improved the running time to O(nǫ (m+ n logn)).
Many combinatorial algorithms consider a simpler model proposed by Fisher

(see [3]), in which every buyer possesses an initial amount of money instead of
some goods. Eisenberg and Gale [9] reduced the problem of computing the Fisher
market equilibrium to a concave cost maximization problem and thus gave the
first polynomial algorithm for the Fisher market by the ellipsoid algorithm. The
first combinatorial polynomial algorithm for an exact linear Fisher market equi-
librium is given by Devanur et al [7]. They use the maximum flow algorithm as a
black box in their algorithm. When the input data are integral, their algorithm
needs O(n5 logU + n4 log emax) max-flow computations, where n is the number
of buyers, U the largest integer utility, and emax the largest initial amount of
money of a buyer. If we use the common O(n3) max-flow algorithm (see [1]),
their running time is O(n8 logU + n7 log emax).

We next define the model we will use in this paper and then discuss our main
contributions.

1.1 Model and Definitions

We make the following assumptions on the model as in Jain’s paper [12]:

1. There are n persons in the system. Each person i has only one good, which is
different from the goods other people have. The good person i has is denoted
by good i.

2. Each person has only one unit of good. So, if the price of good i is pi, person
i will obtain pi units of money when selling its good.

3. Each person i has a linear utility function
∑

j uijzij , where zij is the amount
of good j consumed by i.

4. Each uij is an integer between 0 and U .
5. For all i, there is a j such that uij > 0. (Everybody likes some goods.)
6. For all j, there is an i such that uij > 0. (Every good is liked by somebody.)
7. For every proper subset P of persons, there exist i ∈ P and j /∈ P such that

uij > 0.

All these assumptions, with the exception of the last, are without loss of gen-
erality. The last assumption implies that all the equilibrium prices are nonzero [12],
and it is only useful for the next section. In Section 4, we will discuss more about
the last assumption.

Let p = (p1, p2, ..., pn) denote the vector of prices of goods 1 to n, so they are
also the budgets of persons 1 to n. In this paper, we denote the set of all buyers
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to be B = {b1, b2, ..., bn} and the set of all goods to be C = {c1, c2, ..., cn}. So, if
the price of goods ci is pi, buyer bi will have pi amount of money. For a subset
B′ of persons or a subset C′ of goods, we also use p(B′) or p(C′) to denote the
total prices of the goods the persons in B′ own or the goods in C′. For a vector
v = (v1, v2, ..., vk), let:

– |v| = |v1|+ |v2|+ ...+ |vk| be the l1-norm of v.
– ‖v‖ =

√

v21 + v22 + ...+ v2k be the l2-norm of v.

Each person only buys its favorite goods, that is, the goods with the maximum
ratio of utility and price. Define its bang per buck to be αi = maxj{uij/pj}. The
classical Arrow-Debreu [2] theorem says that there is a non-zero market clearing
price vector.

For the current price vector p, the “equality graph” is a flow network G =
({s, t} ∪ B ∪ C,EG), where s is the source node and t is the sink node, then
B = {b1, ..., bn} denotes the set of buyers and C = {c1, ..., cn} denotes the set of
goods. EG consists of:

– Edges from s to every node bi in B with capacity pi.
– Edges from every node ci in C to t with capacity pi.
– Edges from bi to cj with infinite capacity if uij/pj = αi. Call these edges

“equality edges”.

So, our aim is to find a price vector p such that there is a flow in which all
edges from s and to t are saturated, i.e., (s,B∪C ∪ t) and (s∪B∪C, t) are both
minimum cuts. When this is satisfied, all goods are sold and all of the money
earned by each person is spent.

In a flow f , define the surplus r(bi) of a buyer i to be the residual capacity
of the edge (s, bi), and define the surplus r(cj) of a good j to be the residual
capacity of the edge (cj , t). That is, r(bi) = pi−

∑

j fij , and r(cj) = pj −
∑

i fij ,
where fij is the amount of flow in the edge (bi, cj). Define the surplus vector of
buyers to be r(B) = (r(b1), r(b2), ..., r(bn)). Also, define the total surplus to be
|r(B)| = ∑

i r(bi), which is also
∑

j r(cj) since the total capacity from s and to
t are both equal to

∑

i pi. For convenience, we denote the surplus vector of flow
f ′ by r′(B). In the network corresponding to market clearing prices, the total
surplus of a maximum flow is zero.

1.2 Overview of our algorithm

The overall structure of our algorithm is similar to the ones of Devanur et al. [7]
and Orlin [14] for computing equilibrium prices in Fisher markets, however,
the details are quite different. The algorithm works iteratively. It starts with
all prices equal to one. In each iteration it adjusts prices and allocations. The
adjustment is guided by the analysis of a maximum flow in the equality graph.

In each iteration we first compute a balanced maximum flow [7]. A balanced
maximum flow3 is a maximum flow that minimizes the l2-norm of the surplus

3 In contrast to [7] the balanced maximum flow is not unique.
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vector r(B). We then order the buyers in order of decreasing surpluses: b1, . . . , bn.
We find the minimal i such that r(bi) is substantially larger (by a factor of
1 + 1/n) than r(bi+1); i = n if there is no such i. Let B′ = {b1, . . . , bi} and let
Γ (B′) be the goods that are adjacent to a node in B′ in the equality graph. There
is no flow from the buyers in B \B′ to the goods in Γ (B′); this is due to the fact
that the flow is balanced. We raise the prices of and the flows4 into the nodes of
Γ (B′) by a common factor x. This affects the surpluses of the buyers, some go
up and some go down. More precisely, there are four kind of buyers, depending
on whether a buyer belongs to B′ or not and on whether the good owned by the
buyer belongs to Γ (B′) or not. We increase the prices until one of three events
happens: (1) a new edge enters the equality graph5 (2) the surplus of a buyer
in B′ and a buyer in B \B′ becomes equal, or (3) x reaches a substantial value
(1 + 1/(n3) in our algorithm).6 This ends the description of an iteration.

In what sense are we making progress? The l2-norm of the surplus vector
does not decrease in every iteration.7 In (3), the l2-norm may increase. However,
also at least one price increases significantly. Since we can independently upper
bound the prices, we can bound the number of iterations in which event (3)
occurs, and as a consequence, the total increase of the l2-norm of the surplus
vector. When event (1) or (2) occurs, the l2-norm of the surplus vector decreases
substantially, since surplus moves from a buyer in B′ to a buyer in B \ B′ and
buyers in these two groups have, by the choice of groups, substantially different
surpluses.

We continue until the l2-norm of the surplus vector is sufficiently small, so
that a simple rounding procedure yields equilibrium prices.

1.3 Other Results

Recently, Orlin [14] improved the running time for computing the linear Fisher’s
model to O(n4 logU + n3 log emax) and also gave the first strongly polynomial
algorithm with running time O(n4 logn). The problem of finding strongly poly-
nomial algorithm for the linear Arrow-Debreu model is still open.

There are also algorithms considering Arrow-Debreu model with non-linear
utilities [6,5]. The CES (constant elasticity of substitution) utility functions have
drawn much attention, where the utility functions are of the form u(x1, ..., xn) =
(
∑n

j=1 cjx
p
j )

1/p for −∞ < p < 1 and p 6= 0. [5] has shown that for p > 0 and
−1 ≤ p < 0, there are polynomial algorithms by convex program. However,
Chen, Paparas and Yannakakis [4] have shown that it is PPAD-hard to solve
market equilibrium of CES utilities for p < −1. They also define a new concept

4 In [7,14] only prices are raised and flows stay the same. This works for Fisher’s
model because budgets are fixed. However, in the Arrow-Debreu model, an increase
of prices of goods will also increase the budgets of their owners.

5 The increase of prices of goods in Γ (B′) makes the goods in C\Γ (B′) more attractive
and hence an equality edge connecting a buyer in B′ with a good in C \ Γ (B′) may
come into existence. This event also exists in [7,14].

6 Events (2) and (3) have no parallel in [7,14].
7 In [7] the balance is strictly decreasing.
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“Non-monotone utilities”, and show the PPAD-hardness to solve the markets
with non-monotone utilities. It remains open to find the exact border between
tractable and intractable utility functions.

2 The algorithm

As in [7], our algorithm finds a balanced flow and increases the prices in the
“active subgraph”. But, in the Arrow-Debreu model, when we increase the prices
of some good i, the budget of buyer i will also increase. So, we need to find a
careful way to prevent the total surplus from increasing.

2.1 Balanced flow

As in [7], we define the concept of balanced flow to be a maximum flow that
balances the surpluses of buyers. (However, unlike in their paper, the surpluses
of goods can be positive here, which are not supposed to be balanced, so the
balanced flow is not necessarily unique.)

Definition 1. In the network G of current p, a balanced flow is a maximum
flow that minimizes ‖r(B)‖ over all choices of maximum flows.

For flows f and f ′ and their surplus vectors r(B) and r′(B), respectively, if
‖r(B)‖ < ‖r′(B)‖, then we say f is more balanced than f ′. The next lemma
shows why it is called “balanced”.

Lemma 1. [7] If a ≥ bi ≥ 0, i = 1, 2, ..., k and δ ≥ ∑k
i=1 δi, where δ, δi ≥ 0,

i = 1, 2, ..., k, then:

‖(a, b1, b2, ..., bk)‖2 ≤ ‖(a+ δ, b1 − δ1, b2 − δ2, ..., bk − δk)‖2 − δ2. (1)

Proof.

(a+ δ)2 +

k
∑

i=1

(bi − δi)
2 − a2 −

k
∑

i=1

b2i (2)

≥ 2aδ + δ2 − 2

k
∑

i=1

biδi ≥ δ2 + 2a(δ −
k

∑

i=1

δi) ≥ δ2. (3)

Lemma 2. [7] In the network G for a price vector p, given a maximum flow f ,
a balanced flow f ′′ can be computed by at most n max-flow computations.

Proof. In the residual graph Gf w.r.t. to f , let S ⊆ B ∪ C be the set of nodes
reachable from s, and let T = (B ∪C) \ S be the remaining nodes. Then, there
are no edges from S∩B to T ∩C in the equality graph, and there is no flow from
T ∩ B to S ∩ C. The buyers in T ∩ B and the goods in S ∩ C have no surplus
w.r.t. f , and this holds true for every maximum flow. Let G′ be the network
spanned by s ∪ S ∪ t, and let f ′ be the balanced maximum flow in G′. The f ′

can be computed by n max-flow computations. (Corollary 8.8 in [7] is applicable
since (s ∪ S, t) is a min-cut in G′.) Finally, f ′ together with the restriction of f
to s ∪ T ∪ t is a balanced flow f ′′ in G.
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The surpluses of all goods in f ′′ are the same as those in f since we only
balance the surpluses of buyers.

2.2 Price adjustment

We need to increase the prices of some goods to get more equality edges ([7,14]).
For a subset of buyers B1, define its neighborhood Γ (B1) in the current network
to be: Γ (B1) = {cj ∈ C|∃bi ∈ B1, s.t. (bi, cj) ∈ EG}. Clearly, there is no
edge in G from B1 to C \ Γ (B1). In a balanced flow f , given a surplus bound
S > 0, let B(S) denote the subset of buyers with surpluses at least S, that is,
B(S) = {bi ∈ B|r(bi) ≥ S}. We can see the goods in Γ (B(S)) have no surplus.

Lemma 3. In a balanced flow f , given a surplus bound S, there is no edge that
carries flow from B \B(S) to Γ (B(S)).

Proof. Suppose there is such an edge (bi, cj) that carries flow such that bi /∈
B(S) and cj ∈ Γ (B(S)). Then, in the residual graph, there are directed edges
(bk, cj) and (cj , bi) with nonzero capacities in which bk ∈ B(S). However, r(bk) ≥
S > r(bi), so we can augment along this path and get a more balanced flow,
contradicting that f is already a balanced flow.

From Lemma 3, we can increase the prices in Γ (B(S)) by the same factor
x without inconsistency. There is no edge from B(S) to C \ Γ (B(S)), and the
edges from B \ B(S) to Γ (B(S)) are not carrying flow, and hence, there will
be no harm if they disappear from the equality graph. If there are edges (bi, cj)
and (bi, ck) where bi ∈ B(S), cj , ck ∈ Γ (B(S)), then uij/pj = uik/pk. Since the
prices in Γ (B(S)) are multiplied by a common factor x, uij/pj and uik/pk remain
equal after a price adjustment. However, the goods in C \ Γ (B(S)) will become
more attractive, so there may be edges from B(S) to C \ Γ (B(S)) entering the
network, and the increase of prices needs to stop when this happens. Define such
a factor to be X(S), that is,

X(S) = min{uij

pj
· pk
uik

|bi ∈ B(S), (bi, cj) ∈ EG, ck /∈ Γ (B(S))}. (4)

So, we need O(n2) multiplications/divisions to compute X(S). When we
increase the prices of the goods in Γ (B(S)) by a common factor x ≤ X(S), the
equality edges in B(S)∪ Γ (B(S)) will remain in the network. We will also need
the following theorem to prevent the total surplus from increasing.

Theorem 1. Given a balanced flow f in the current network G and a surplus
bound S, we can multiply the prices of goods in Γ (B(S)) with a parameter x > 1.
When x ≤ mini{pi/(pi − r(bi))|bi ∈ B(S), ci /∈ Γ (B(S))} and x ≤ X(S), we
obtain a flow f ′ in the new network G′ of adjusted prices with the same value of
total surplus by:

f ′

ij =

{

x · fij if cj ∈ Γ (B(S));
fij if cj /∈ Γ (B(S)).
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Then, the surplus of each good remains unchanged, and the surpluses of the
buyers become:

r′(bi) =















x · r(bi) if bi ∈ B(S), ci ∈ Γ (B(S));
(1 − x)pi + x · r(bi) if bi ∈ B(S), ci /∈ Γ (B(S));
(x − 1)pi + r(bi) if bi /∈ B(S), ci ∈ Γ (B(S));
r(bi) if bi /∈ B(S), ci /∈ Γ (B(S)).

We call these kinds of buyers type 1 to type 4 buyers, respectively.

Proof. Since the flows on all edges associated with goods in Γ (B(S)) are multi-
plied by x, the surplus of each good in Γ (B(S)) remains zero. Only the surplus
of type 2 buyers decreases because the flows from a type 2 buyer bi are multiplied
by x, but its budget pi is not changed. The flow after adjustment is x(pi−r(bi)).
We need this to be at most pi, so x ≤ pi/(pi − r(bi)) for all type 2 buyers bi,
and in f ′, the new surplus r′(bi) = (1 − x)pi + xr(bi).

Since both money and flows are multiplied by x for a type 1 buyer, their
surplus is also multiplied by x. For a type 3 buyer bi, their flows are not changed,
but their money is multiplied by x, so the new surplus is xpi − (pi − r(bi)).

After each price adjustment, in the new network, we will find a maximum
flow by augmentation on the adjusted flow f ′ and then find a balanced flow by
Lemma 2. This will guarantee that when the surplus of a good becomes zero, it
will not change back to non-zero anymore. Thus, the prices of the goods with
non-zero surpluses will not be adjusted.

Property 1. The prices of goods with non-zero surpluses remain unchanged in
the algorithm.

2.3 Whole procedure

The whole algorithm is shown in Figure 1, where K is a constant we will set
later. In this section, one iteration denotes one execution of the loop body.

In the first iteration, we construct a balanced flow f in the network where all
prices are equal to 1. In the equality graph, we have at least one edge incident to
every buyer. The total surplus will be bounded by n, actually n − 1 as at least
one good will be sold completely. In each iteration, we first update the prices
and the flows as described in Theorem 1. By Theorem 1, in the execution of the
algorithm, the total surplus will never increase. After having updated the flows
and prices, we round them. The purpose of rounding is to control the bitlength
of the numbers handled by the algorithm. Once the total surplus is sufficiently
small, we stop and round the current solution to an exact solution. The rounding
procedures and termination conditions are given by the following two lemmas,
whose proofs will be discussed in Section 3.

Lemma 4. [Restated and proven as Corollary 1 in Section 3] For ∆ = nO(1)UO(n)

and a surplus bound ǫ ≥ n5/∆, we can adjust prices and flows to bitlength
O(n log(nU)), so that the l2-norm of the surplus vector only increases by a fac-
tor of 1 +O(1/n4).
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Lemma 5. [Restated and proven as Lemma 11 in Section 3] When the total
surplus is < 1

4n4U3n = ǫ in a flow f , we can obtain an exact solution from the
current equality graph.

Initially set pi = 1 for all goods i;
Repeat

Construct the network G for the current p, and compute the balanced flow f in it;
Sort all buyers by their surpluses in decreasing order: b1, b2, ..., bn;

Find the first i in which r(bi)
r(bi+1)

> 1 + 1/n, and i = n when there is no such i;

Let S = r(bi) and obtain B(S), Γ (B(S)),X(S); (B(S) = {b1, b2, ..., bi})
Multiply the prices in Γ (B(S)) by a gradually increasing factor x > 1 until:
(Let f ′ be the flow corresponding to x which is constructed according to Theorem 1.)

New equality edges emerge (x reaches X(S));
OR the surplus of a buyer ∈ B(S) and a buyer /∈ B(S) equals in f ′;
OR x reaches 1 + 1

K·n3

Round the prices in Γ (B(S)) according Lemma 4 with ∆ = 4n9U3n;
Until |r(B)| < ǫ, where ǫ = 1

4n4U3n ;
Finally, round the prices according to Lemma 5 to get an exact solution.

Fig. 1. The whole algorithm

To ensure that the algorithm will terminate in a polynomial number of steps,
we will require the following lemmas. From Property 1, the prices of goods with
non-zero surpluses stay one during the whole algorithm, so there is still a good
with price one in the end. And, we need to bound the largest price:

Lemma 6. The prices of goods are at most (nU)n−1.

Proof. It is enough to show that during the entire algorithm, for any non-empty
and proper subset Ĉ of goods, there are goods ci ∈ Ĉ, cj /∈ Ĉ such that pi/pj ≤
nU . So, when we sort all the prices in decreasing order, the ratio of two adjacent
prices is at most nU . Since there is always a good with price 1, the largest price
is ≤ (nU)n−1.

If Ĉ contains goods with surpluses, then their price is 1. The claim follows.
Let B̂ = Γ (Ĉ) be the set of buyers adjacent to goods in Ĉ in the equality

graph. If there exist bi, cj s.t. bi ∈ B̂, cj /∈ Ĉ and uij > 0, let ck ∈ Ĉ be one of
the goods adjacent to bi in the equality graph, and then uij/pj ≤ uik/pk. So,
pk/pj ≤ uik/uij ≤ U .

If there do not exist such bi, cj , then there is no edge between B̂ and C \ Ĉ,

and there is bk /∈ B̂, but ck ∈ Ĉ. Otherwise the persons whose goods are in Ĉ
will not like any goods not in Ĉ, contradicting assumption (7). Let B′ = {j|bj ∈
B̂, cj 6∈ Ĉ} and B′′ = {j|bj 6∈ B̂, cj ∈ Ĉ}. We have:

pk ≤ p(B′′) = p(Ĉ)− p({j|bj ∈ B̂, cj ∈ Ĉ}) (5)

≤ p(B̂)− p({j|bj ∈ B̂, cj ∈ Ĉ}) = p(B′). (6)
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The inequality of the second line holds since goods in Ĉ have surplus 0 and all
of the flows to Ĉ come from B̂. Thus, B′ must be non-empty, and hence, there
is a j ∈ B′ with pj ≥ p(B′)/n. We conclude pk ≤ npj .

By Lemma 5, we can round to the exact solution when the algorithm ter-
minates. To analyze the correctness and running time, we need the following
lemma:

Lemma 7. After every price adjustment by x, the l2-norm of the surplus vector
‖r(B)‖ will either

– be multiplied by a factor of 1 +O(1/n3) when x = 1 + 1
Kn3 , or

– be divided by a factor of 1 +Ω(1/n3).

Note that by Lemma 4, the rounding procedure can only increase ‖r(B)‖
by a factor of 1 + O(1/n4). Thus, the statement of Lemma 7 also holds after
rounding.

Theorem 2. In total, we need to compute O(n6 log(nU)) maximum flows, and
the length of numbers is bounded by O(n log(nU)). Thus, if we use the common
O(n3) max-flow algorithm (see [1]), the total running time is O(n10 log2(nU)).

Proof. By Lemma 6, every price can be multiplied by x = 1 + 1
Kn3 for

O(log1+1/(Kn3)(nU)n) = O(n4 log(nU)) times, so the total number of iterations

of the first type is O(n5 log(nU)). The total factor multiplied to ‖r(B)‖ by the

first type iterations is (1 +O(1/n3))O(n5 log(nU)).
At the beginning, ‖r(B)‖ ≤ √

n. When the algorithm terminates, ‖r(B)‖ <
ǫ = 1

4n4U3n , so the number of second type iterations is bounded by

log1+Ω(1/n3)(
1

ǫ

√
n(1 +O(1/n3))O(n5 log(nU))) = O(n5 log(nU)). (7)

Thus, the total number of iterations performed is bounded by O(n5 log(nU)).
Since we need to compute n max-flows for the balanced flow in every iteration,
we need O(n6 log(nU)) maximum flow computations in total. By Lemma 6 and
Lemma 4, the length of the numbers to be handled is bounded by O(n log(nU)).
Note that max-flow computations only need additions and subtractions. We
perform multiplications and divisions when we scale prices and when we set
up the max-flow computation in the computation of balanced flow. The num-
bers of multiplications/divisons is by a factor n less than the numbers of addi-
tions/subtractions, and hence, it suffices to charge O(n log(nU)) per arithmetic
operation.

Next we will prove Lemma 7. When we sort all the buyers by their surpluses
b1, b2, ..., bn in decreasing order, b1 is at least |r(B)|/n (where |r(B)| is the total

surplus). So, for the first i in which r(bi)
r(bi+1)

> 1+1/n, we can see
r(bj)

r(bj+1)
≤ 1+1/n

for j < i, so r(bi) ≥ r(b1)(1 + 1/n)−n > |r(B)|/(e · n). When such an i does not
exist, each r(bi) is larger than |r(B)|/(e · n), and all goods in Γ (B) must have

9



zero surplus because the flow is otherwise not maximum. Thus, there are goods
that have no buyers, and hence, either new equality edges emerge, or x reaches
1 + 1

Kn3 (condition (3a) below).

From the algorithm, in every iteration, x satisfies the following conditions:

1. x ≤ 1 + 1
Kn3 .

2. In f ′, r′(b) ≥ r′(b′) for all b ∈ B(S), b′ /∈ B(S). Here, r′(b) is the surplus of
b w.r.t. f ′, the flow corresponding to x by Theorem 1.

3. If x < 1 + 1
Kn3 , the following possibilities arise:

(a) There is a new equality edge (bi, cj) with bi ∈ B(S), cj /∈ Γ (B(S)).
By Lemma 8 below, we can obtain a flow f ′′ in which either r′′(bi) =
r′(bi)− pj, or there is a bk /∈ B(S) with r′′(bi) = r′′(bk) (same as (b)).

(b) When x satisfies the second requirement in the algorithm, it satisfies:
there exist b ∈ B(S) and b′ /∈ B(S) such that r′(b) = r′(b′) in f ′.

Lemma 8. If there is a new equality edge (bi, cj) with bi ∈ B(S), cj /∈ Γ (B(S)),
we can obtain a flow f ′′ from f ′ (without increasing the total surplus) in which
either r′′(bi) = r′(bi)− pj, or there is a bk /∈ B(S) with r′′(bi) = r′′(bk).

Proof. Let B′ ⊆ B \B(S) be the set of buyers with flows to cj in f ′, and let w
be the largest surplus of a buyer in B \ B(S). Run the following procedure (f ′′

denotes the current flow in the algorithm):

Augment along (bi, cj) gradually until:
r′′(bi) = w or r′′(cj) = 0;

If r′′(bi) = w then Exit;
For all bk ∈ B′ in any order

Augment along (bi, cj , bk) gradually until:
r′′(bi) = max{r′′(bk), w} or f ′′(bk, cj) = 0;

Set w = max{r′′(bk), w};
If r′′(bi) = w then Exit.

During the procedure, the surplus of bi decreases but cannot become less than the
surplus of a buyer in B \B(S), so condition (2) holds. In the end, if r′′(bi) = w,
then there is a bk ∈ B \ B(S) s.t. r′′(bi) = r′′(bk); otherwise, cj has no surplus,
and the flows to it all come from bi, so r′′(bi) = r′(bi)− pj .

From Theorem 1, the surpluses in f ′ will increase for type 1 and 3 buyers,
will decrease for type 2 buyers, and will stay unchanged for type 4 buyers. Note
that the surplus of a type 1 or 2 buyer cannot be smaller than the surplus of any
type 3 or 4 buyer. From Theorem 1 and Lemma 8, we infer that the total surplus
will not increase, type 2 and 3 buyers will get more balanced, and r′(b) = x ·r(b)
for type 1 buyers b, so ‖r′(B)‖ ≤ x‖r(B)‖ = (1 +O(1/n3))‖r(B)‖.

In (3a), there is a new equality edge (bi, cj). After the procedure described
in Lemma 8, if there is no bk /∈ B(S) such that r′′(bi) = r′′(bk), then r′′(bi) =
r′(bi)− pj (pj ≥ 1). For all bk /∈ B(S), r′′(bi) > r′′(bk), and r′′(bk) = r′(bk)+ δk,
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where δk ≥ 0 and
∑

bk /∈B(S) δk ≤ pj . Because |r(B)| ≤ n, ‖r(B)‖2 ≤ n2. By
Lemma 1,

‖r′′(B)‖2 ≤ ‖r′(B)‖2 − p2j (8)

≤ x2‖r(B)‖2 − 1 (9)

≤ x2‖r(B)‖2 − 1

n2
‖r(B)‖2 (10)

= (1 −Θ(1/n2))‖r(B)‖2. (11)

So, we have ‖r′′(B)‖ = (1−Ω(1/n2))‖r(B)‖.
In (3a), after the procedure described in Lemma 8, if there is bk /∈ B(S) such

that r′′(bi) = r′′(bk), then we are in a similar situation as in (3b), possibly with
an even smaller total surplus. So, we can prove this case by the proof of (3b).

In (3b), let u1, u2, ..., uk and v1, v2, ..., vk′ be the list of original surpluses of
type 2 and 3 buyers, respectively. Define u = min{ui}, v = max{vj}, so ui ≥ u
for all i, and vj ≤ v for all j, and u > (1 + 1/n)v. After the price and flow
adjustments in Theorem 1, the list of surpluses will be u1−δ1, u2−δ2, ..., uk−δk
and v1 + δ′1, v2 + δ′2, ..., vk + δ′k′ (here δi, δ

′

j ≥ 0 for all i, j), and there exist
I, J such that uI − δI = vJ + δ′J , where uI − δI is the smallest among ui − δi,
and vJ + δ′J is the largest among vj + δ′j by condition (2). Since the surpluses
of type 1 buyers also increase (and the total surplus may decrease), we have
∑

i δi ≥
∑

j δ
′

j , δI ≤ ∑

i δi, and δ′J ≤ ∑

j δ
′

j . Compute:

∑

i

(ui − δi)
2 +

∑

j

(vj + δ′j)
2 − (

∑

i

u2
i +

∑

j

v2j ) (12)

= −2
∑

i

uiδi + 2
∑

j

vjδ
′

j +
∑

i

δ2i +
∑

j

δ′
2
j (13)

≤ −u
∑

i

δi + v
∑

j

δ′j −
∑

i

δi(ui − δi) +
∑

j

δ′j(vj + δ′j) (14)

≤ −(u− v)
∑

i

δi − (uI − δI)
∑

i

δi + (vJ + δ′J)
∑

j

δ′j (15)

≤ −(u− v)
∑

i

δi (16)

≤ −(u− v)max{δI , δ′J} (17)

≤ −1

2
(u − v)2 (18)

< − 1

2(n+ 1)2
u2. (19)

Let w1, w2, ...wk′′ be the list of surpluses of type 1 buyers; all of them are
≤ e · u. After price adjustment, the surpluses will be x ·w1, x ·w2, ...x ·wk′′ from
Theorem 1. Compute:

∑

i

(xwi)
2 ≤ (1 +

1

Kn3
)2
∑

i

w2
i (20)

11



≤
∑

i

w2
i + (

2

Kn3
+

1

K2n6
) · ne2u2 (21)

=
∑

i

w2
i + (

2

Kn2
+

1

K2n5
)e2u2. (22)

Let K = 32e2, then the change to the sum of squares of surpluses for type 2
and 3 buyers is less than − 1

8n2 u
2 = − 4

Kn2 e
2u2. The total change to ‖r(B)‖2 is:

< (− 2

Kn2
+

1

K2n5
)e2u2. (23)

Since u ≥ 1
er(bi) for all buyers bi, nu

2 ≥ 1
e2 ‖r(B)‖2. Since the change is negative:

‖r′(B)‖2 < ‖r(B)‖2 + (− 2

Kn2
+

1

K2n5
)
1

n
‖r(B)‖2 (24)

= ‖r(B)‖2 − 2

Kn3
‖r(B)‖2 + 1

K2n6
‖r(B)‖2 (25)

= ‖r(B)‖2(1− 1

Kn3
)2. (26)

Thus, Lemma 7 is proved.

3 Rounding and termination condition

In this section, we will show how to round the prices to rational numbers with
denominators of length O(n log(nU)). Also, we need the rounding process to
obtain an exact market equilibrium when the surplus is very small. Here, we
define the undirected equality graph F on B ∪ C of undirected equality edges
between buyers and goods, and we consider every connected component in this
undirected equality graph.

Lemma 9. In a connected component Ψ containing k goods in the undirected
equality graph, if we know that pj is a rational number with denominator N ,
where cj ∈ Ψ ∩C, then all the prices of goods in Ψ ∩C are rational numbers with
denominator ≤ N · Uk.

Proof. Find a tree that connects all the goods in Ψ . The tree will contain k+k′−1
edges if it contains k′ buyers. Then, we can get k−1 linear independent equations
pj/uij = pj′/uij′ when both (bi, cj) and (bi, cj′) are tree edges. Together with
the equation pj = I/N for some integer I, we can see that all the prices of goods
in Ψ have denominator ≤ N · Uk.

For an integer ∆, we call a connected component in the undirected equality
graph consistent if it has a good whose price is a rational number with de-
nominator ∆. Then, by Lemma 9, the prices of goods in a consistent connected
component are rational numbers with denominator ≤ ∆ · Un .
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Lemma 10. In a balanced flow f of total surplus ≥ ǫ ≥ n5/∆, for ∆ > nUn, if
all the connected components in (B \ B(S), C \ Γ (B(S))) (for the B(S) in the
original algorithm) are consistent, we can adjust the prices in Γ (B(S)) so that
all connected components in the equality graph are consistent. In the adjusted
flow f ′ by Theorem 1, ‖r′(B)‖ = ‖r(B)‖(1+O( n

ǫ·∆)), where r′(B) is the surplus
vector in f ′.

Proof. Here B(S) and Γ (B(S)) are the original ones in every iteration of the
algorithm. The procedure is shown below:

Set B′ = B(S);
Repeat

Multiply the prices in Γ (B′) by x > 1 until:
A price in Γ (B′) has denominator ∆;
OR a new equality edge emerges;

Update the flow f by Theorem 1;
Remove new consistent components from B′ ∪ Γ (B′);

Until B′ = ∅.
Since all the prices change by at most 1/∆, the changes to the total surplus of
type 2 buyers is at most n/∆ < S, so the surplus of every type 2 buyer is still

positive. Since ‖r(B)‖2 ≥ 1
n |r(B)|2 ≥ ǫ

n |r(B)| ≥ ǫ2

n ,

‖r′(B)‖2 (27)

≤ ‖r(B)‖2 + 2

∆
|r(B)| + n

∆2
(28)

≤ ‖r(B)‖2 + 2n

ǫ∆
‖r(B)‖2 + n2

ǫ2∆2
‖r(B)‖2 (29)

= ‖r(B)‖2(1 + n

ǫ∆
)2. (30)

During the algorithm, we can see that all the connected components in (B \
B′, C \ Γ (B′)) are consistent since we move the new consistent components to
it. When we find new equality edges connecting B′ and C \ Γ (B′), some nodes
in B′∪Γ (B′) will connect to (B \B′, C \Γ (B′)), so these nodes can be removed.
When a price in Γ (B′) has denominator ∆, the component containing it will
become consistent, so the loop will run for at most n times. In each loop, we
need to compute O(n2) multiplications/divisions, so the running time for this
rounding procedure is less than the computation of a balanced flow.

Combining Lemma 6 and Lemma 10, we have the following corollary.

Corollary 1. [Restatement of Lemma 4] For ∆ = nO(1)UO(n) and a surplus
bound ǫ ≥ n5/∆, we can adjust prices to length O(n log(nU)), so that in its
adjusted flow, the l2-norm of the surplus vector only increases by a factor of
1 +O(1/n4).

Lemma 11. [Restatement of Lemma 5] When the total surplus is < 1
4n4U3n = ǫ

in a flow f , we can obtain an exact solution from the current equality graph.
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Proof. Add the edge (bi, ci) for each person i to the undirected equality graph
F to obtain F ′. For a connected component of F ′, the sum of the prices on both
sides are the same. For every component Φ of F ′ with no surplus node, increase
its prices by a common factor until a new equality edge emerges; this will unite
two components. Repeat this until all components in F ′ have a surplus node.
We may assume w.l.o.g. that F ′ becomes connected by this process. Otherwise,
the following argument can be applied independently to each component of F ′.
The total surplus is still less than ǫ. The following rounding procedure will be
performed on these revised prices.

Denote the set of connected components in the undirected equality graph F
(not F ′) by Λ = {Ψk}. For each component Ψk in F , find a spanning tree Tk in
it, then write the following equations:

pj/uij = pj′/uij′ , ∀(bi, cj), (bi, cj′ ) ∈ Tk. (31)

Since we have one such equation if cj and cj′ are connected by one bi, we can have
|Ψk∩C|−1 linear independent equations. The total number of linear independent
equations for all components in F is n− |Λ|.

Since there is no flow between components, for each component Ψk in F , the
money difference between buyers and goods in Ψk is only the surplus difference.
So, we can write

∑

bi∈B∩Ψk

pi −
∑

ci∈C∩Ψk

pi = ǫk, ∀Ψk. (32)

Here, ǫk (positive or negative) comes from the surpluses of goods and buyers,
so

∑ |ǫk| ≤ 2ǫ. If bi and ci belong to distinct connected components Ψj and Ψk,
the coefficient of pi is +1 in the equation of Ψj, −1 in the equation for Ψk, and
0 in all other equations. If bi and ci belong to the same connected component,
the coefficient of pi is zero in all equations. Assume now that there is a proper
subset of the equations that is linear dependent. Then, if bi or ci belongs to
one of the components in the subset, both of them do. However, the subset of
components is a proper subgraph of F ′, and hence, there is at least one i such
that only one of bi or ci belongs to the subset of components. Thus, we have
|Λ| − 1 independent equations.

Since there is a good ci with non-zero surplus, we have pi = 1. Thus, the
current price vector p is the solution of these linear equations Ap = X in which
A is invertible.

Consider the following n linear equations of price vector p′ with ǫk removed:

p′j/uij = p′j′/uij′ , ∀ (bi, cj), (bi, cj′) ∈ Tk (33)
∑

bi∈B∩Ψk

p′i −
∑

ci∈C∩Ψk

p′i = 0, ∀ Ψk (34)

p′i = 1, ∃ r(ci) > 0. (35)

They can be denoted by Ap′ = X ′, so there is also a unique solution. The solution
will be rational numbers with a common denominator D ≤ nUn by Cramer’s
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rule. Since ||X | − |X ′|| < 2ǫ, the difference |p′i − pi| of solutions of each price is
at most 2ǫ · nUn = 1

2n3U2n by Cramer’s rule. The difference between any two
different numbers of denominators D,D′ ≤ nUn is a positive rational number of
denominator D ·D′ < n2U2n, which is larger than 2|p′i−pi|. Since p′i is a rational
number with denominator D ≤ nUn, we can get p′i by rounding pi to the nearest
rational number of denominator ≤ nUn. This can be done by continued fraction
expansion, which needs O(n log2 D) = O(n3 log2(nU)) time by Theorem 3.13
in [10]. We can also compute D = det(A) directly and round every price to the
nearest rational with denominator D or solve the linear equations Ap′ = X ′.
By Theorem 5.12 in [10], computing the determinant of a matrix of dimension
n with entries ≤ U takes Õ(n4 logU) time, and solving Ap′ = X ′ also takes
Õ(n4 logU) time.

Now, all the prices p′i are of the form qi/D, where qi, D are integers and D ≤
nUn a common denominator. So, |pi− qi

D | ≤ 1
2n3U2n = ǫ′

D , in which ǫ′ = D
2n3U2n ≤

1
2n2Un . Construct the flow network G′ for the new prices q = (q1, q2, ..., qn).
Consider any bi ∈ B and cj , ck ∈ C and assume uij/pj ≤ uik/pk. Then,

uijqk ≤ uij(pkD + ǫ′) (36)

≤ uikpjD + uijǫ
′ (37)

≤ uik(qj + ǫ′) + uijǫ
′ (38)

≤ uikqj + (uik + uij)ǫ
′ (39)

< uikqj + 1, (40)

and hence, uijqk ≤ uikqj since uijqk and uikqj are integral. We conclude that
the edges in G are all in G′.

Denote the size of the cuts (s,B ∪ C ∪ t) and (s ∪ B ∪ C, t) in G′ by Z,
which is an integer. Then, the size of this cut in G is ≥ (Z − nǫ′)/D. If there
is another cut in G′ of size ≤ Z − 1, it is also a cut in G, and its size in G is
≤ Z−1

D +2n ǫ′

D = Z/D− 1−2nǫ′

D , so the maximum flow in G will have total surplus

≥ 1−3nǫ′

D > ǫ. Thus, (s,B ∪C ∪ t) and (s∪B ∪C, t) are both min-cuts in G′, so
the prices reach a market equilibrium.

4 General Case

Here, we consider the case which does not satisfy the assumption (7) in Sec-
tion 1.1, i.e., there may be a proper subset P of persons such that uij = 0 for all
i ∈ P and j 6∈ P . Note that all other assumptions are satisfied, so the equilibrium
exists [2].

The following procedure resembles the one in Secton 6 of [12]. We draw the
liking graph of persons in which there is a directed edge from i to j iff uij > 0.
If the graph is strongly connected, then the case satisfies assumption (7). Oth-
erwise, if we shrink every strongly connected component into one vertex, then
the graph will be a DAG (Directed acyclic graph), and we can find a topolog-
ical order of strongly connected components: P1, P2, ...Pk, in which there are
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only edges from a lower order to a higher order. We use the algorithm in Sec-
tion 2 to compute the equilibrium for all the persons in every strongly connected
component Pi (i = 1, 2, ..., k). For i = 2, ..., k, multiplying the prices in Pi by
(U+1) ·max{pj|j ∈ Pi−1} will ensure that there are no equality edges from Pi to
Pj for i < j. Since the persons in Pj do not like any goods in Pi for i < j, this will
not affect the equilibrium of every component, so we get a global equilibrium.
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