17,844 research outputs found

    Death Resulting from Pneumocephalus Complicating Endoscopic Food Bolus Retrieval in a Patient with Eosinophilic Esophagitis

    Get PDF
    Pneumocephalus is a rare complication of esophagogastroduodenoscopy (EGD), but existing literature does not discuss pneumocephalus surrounding endoscopic food bolus retrieval. We present a death involving pneumocephalus complicating endoscopic food removal from the esophagus. A 40-year-old man presented with dysphagia and suprasternal discomfort 12 hours following chicken ingestion. On flexible endoscopy, chicken was visualized in the distal esophagus. After successful retrieval, a mucosal laceration was noted where the chicken had been lodged. He was unarousable following the procedure and was emergently transported to a hospital, where computed tomography scanning showed pneumocephalus. He was later declared brain dead. The case was referred for medicolegal autopsy. The brain was examined first, revealing rare air bubbles within meningeal vessels and numerous, diffuse petechiae-like hemorrhages within the brain parenchyma. The esophageal mucosa had focal discoloration and a partial thickness laceration; microscopic examination revealed eosinophilic esophagitis. Eosinophilic esophagitis is a known risk factor for food bolus impaction and should be suspected in such patients. Pneumocephalus is a rare possible complication of EGD for food bolus retrieval. In patients unresponsive after endoscopy, radiographic detection of potential pneumocephalus should be encouraged to enable timely therapy and improved outcomes, or to supplement autopsy in the event of patient death. Forensic pathologists should understand that pneumocephalus is a potential mechanism of injury/death in patients experiencing esophageal trauma, including injury incurred during EGD

    Gender And The Evaluation Of Physicists

    Get PDF

    Getting that Sinking Feeling: Analysis and Impacts of Sea Level Rise on Three National Parks along the East Coast, USA

    Get PDF
    Due to global climate change, sea level rise (SLR) has become a threat for future generations, but the extent of this danger is unknown. To help understand the possible effects of SLR on the east coast of the United States, we studied three national parks: Acadia National Park (ACAD), Assateague Island National Seashore (ASIS) and Everglades National Park (EVER). We predicted that ACAD would be less affected by SLR than ASIS and EVER due to the construction of its beach profile. By measuring the beach profile, we found that Sand Beach in ACAD was reflective with an average slope of 3.2 cm/m while South Ocean Beach in ASIS had an intermediate morphology with an average slope of 1.57 cm/m. The Snake Bight Channel beach in EVER was dissipative and had no slope. Using historical Landsat imagery from 1984 to 2016, we estimated that ACAD’s water area increased by 1.61%, that ASIS’s water area increased by 2.47%, and that the EVER’s water area decreased by 0.22% between 1992 and 2011. Using RCP scenarios from the latest IPCC report, we estimated future inundation levels in each park along with the percent change between the best and worst-case scenarios. Under the RCP8.5 scenario, ACAD had 1.36 km2 of inundation, ASIS had 37.11 km2, and EVER had 366.47 km2. ACAD had the highest percent change between the worst and best RCP scenario at 15.70%. ASIS had a slightly smaller percent change at 14.25% and EVER had even less at 10.42%. This study suggests that continued SLR will cause national parks billions of dollars in property damage and the loss of their inherent ecological value

    Neural regulation of cancer: from mechanobiology to inflammation.

    Get PDF
    Despite recent progress in cancer research, the exact nature of malignant transformation and its progression is still not fully understood. Particularly metastasis, which accounts for most cancer death, is a very complex process, and new treatment strategies require a more comprehensive understanding of underlying regulatory mechanisms. Recently, the sympathetic nervous system (SNS) has been implicated in cancer progression and beta-blockers have been identified as a novel strategy to limit metastasis. This review discusses evidence that SNS signaling regulates metastasis by modulating the physical characteristics of tumor cells, tumor-associated immune cells and the extracellular matrix (ECM). Altered mechanotype is an emerging hallmark of cancer cells that is linked to invasive phenotype and treatment resistance. Mechanotype also influences crosstalk between tumor cells and their environment, and may thus have a critical role in cancer progression. First, we discuss how neural signaling regulates metastasis and how SNS signaling regulates both biochemical and mechanical properties of tumor cells, immune cells and the ECM. We then review our current knowledge of the mechanobiology of cancer with a focus on metastasis. Next, we discuss links between SNS activity and tumor-associated inflammation, the mechanical properties of immune cells, and how the physical properties of the ECM regulate cancer and metastasis. Finally, we discuss the potential for clinical translation of our knowledge of cancer mechanobiology to improve diagnosis and treatment

    The ASL-CDI 2.0: an updated, normed adaptation of the MacArthur Bates Communicative Development Inventory for American Sign Language

    Full text link
    Vocabulary is a critical early marker of language development. The MacArthur Bates Communicative Development Inventory has been adapted to dozens of languages, and provides a bird’s-eye view of children’s early vocabularies which can be informative for both research and clinical purposes. We present an update to the American Sign Language Communicative Development Inventory (the ASL-CDI 2.0, https://www.aslcdi.org), a normed assessment of early ASL vocabulary that can be widely administered online by individuals with no formal training in sign language linguistics. The ASL-CDI 2.0 includes receptive and expressive vocabulary, and a Gestures and Phrases section; it also introduces an online interface that presents ASL signs as videos. We validated the ASL-CDI 2.0 with expressive and receptive in-person tasks administered to a subset of participants. The norming sample presented here consists of 120 deaf children (ages 9 to 73 months) with deaf parents. We present an analysis of the measurement properties of the ASL-CDI 2.0. Vocabulary increases with age, as expected. We see an early noun bias that shifts with age, and a lag between receptive and expressive vocabulary. We present these findings with indications for how the ASL-CDI 2.0 may be used in a range of clinical and research settingsAccepted manuscrip

    Vectoring algal toxin in marine planktonic food webs: sorting out nutritional deficiency from toxicity effects

    Get PDF
    The present study determined whether increased mortality and delayed development of larval crabs fed heterotrophic prey that themselves have been fed toxin-containing algae is due to toxicity effects or nutritional deficiency. The effects on larval crabs of previous exposure to heterotrophic prey fed toxin-containing algae were examined. Effects of varying length of exposure of larvae to toxin-containing prey were also examined. The rotifer Brachionus plicatilis was used as a heterotrophic prey source for three larval crab species (Lophopanopeus bellus, Metacarcinus magister, and Glebocarcinus oregonensis). Two rotifer treatments were created, one of rotifers fed a toxin-containing alga (Alexandrium andersoni or A. fundyense); the other of rotifers fed a non-toxic, nutritionally sufficient alga (Isochrysis galbana). To distinguish between toxic and nutritional effects, groups of larvae were fed various combinations of the two rotifer types. Diet treatments included the following ratios of toxin-containing algal fed and non-toxic algal fed rotifers: 100%/0%, 75%/25%, 50%/50%, 25%/75%, and 0%/100%. Larval crabs showed no differences in feeding rates or feeding preferences for the two rotifer diets. Crab survival was lower on the 100% toxin-containing algal fed rotifer diet when compared to the 100% nontoxin- containing algae fed rotifer diet for all three crab species. In all three crab species, stage duration was also extended in larvae fed the 100% toxin-containing algal fed rotifers compared to the 100% non-toxin-containing algal fed rotifers. Increased survival and accelerated development when toxin-containing rotifers were replaced in treatments with non-toxin-containing rotifers implicates nutritional deficiency in the former diet rather than its potential toxic effects. Reduction in time of exposure to a prey source reduced survival and extended development to a greater degree in toxin-containing rotifer treatments than in non-toxincontaining diets. There was no apparent effect of prior exposure to toxin-containing prey on survival or stage duration of later larval stage exposed to the same diet. Larval crabs face an unpredictable and complex prey environment once they enter the plankton. Encounters with Harmful Algal Blooms (HAB) or heterotrophic prey that have ingested HAB species may injure larvae that have no other food source. While my research suggests that nutritional deficiency of the rotifers fed toxin-containing algae causes higher mortality rates and delayed development in the crab larvae, toxin transfer cannot be totally eliminated and a combination of the two factors is most likely causing the negative effects. If the prey environment for these larval crabs includes a nutritionally sufficient animal prey source, negative impacts (i.e. delay in stage duration and decreased survival) caused by exposure to HABs and prey that have ingested HABs can be supplemented

    Spacecraft command verification: The AI solution

    Get PDF
    Recently, a knowledge-based approach was used to develop a system called the Command Constraint Checker (CCC) for TRW. CCC was created to automate the process of verifying spacecraft command sequences. To check command files by hand for timing and sequencing errors is a time-consuming and error-prone task. Conventional software solutions were rejected when it was estimated that it would require 36 man-months to build an automated tool to check constraints by conventional methods. Using rule-based representation to model the various timing and sequencing constraints of the spacecraft, CCC was developed and tested in only three months. By applying artificial intelligence techniques, CCC designers were able to demonstrate the viability of AI as a tool to transform difficult problems into easily managed tasks. The design considerations used in developing CCC are discussed and the potential impact of this system on future satellite programs is examined
    • …
    corecore