43 research outputs found

    Enduring performance of alkali-activated mortars with metakaolin as granulated blast furnace slag replacement

    Get PDF
    In the construction industries worldwide, improving the materials durability and achieving sustainability are the main goal. Owing to their excellent strength performance various alkali-activated binders can be one of the alternative solutions to the polluting traditional cement. Currently, ground blast furnace slag (GBFS) is the major base material used in the alkali-activated binders. High drying shrinkage and low resistance to sulfuric acid attack affect negatively the durability performance and life span of alkali-activated paste, mortars, and concretes made from GBFS. Thus, a series of alkali-activated mortars (AAMs) were designed with various contents (5, 10, 15, 20 and 25, mass%) of metakaolin (MK) as GBFS replacement to improve their strength performance. In addition, the strength and durability performance of the designed mixes were compared with the control mixture prepared using 100% of GBFS. The impact of varying MK level on the long-term performance such as compressive strength, porosity, resistance to sulfuric acid attacks, wet-dry cycles, drying shrinkage, and carbonation were evaluated. Various recommended standards were followed to cast the specimens in different shapes (cubes, cylinders, and prisms) and sizes. Mortar containing 10% of MK as GBFS replacement showed the highest compressive strength (63.4 MPa) at 28 days of curing age. Furthermore, the inclusion of MK as GBFS replacement was shown to improve the AAMs durability performance wherein the drying shrinkage was reduced and the resistance to aggressive environments was increased. The specimens containing 5% and 10% of MK revealed a lower porosity and carbonation depth compared to the control specimen. It was concluded that the proposed AAMs due to their long-term stability can be the sustainable and potential substitutes to the traditional construction materials

    Vitamin D Receptor FokI, ApaI, and TaqI Polymorphisms in Lead Exposed Subjects From Saudi Arabia

    Get PDF
    Vitamin D receptor (VDR) gene polymorphisms were reported to influence blood lead levels (BLL) and the response of subjects to the symptoms of lead toxicity. However, no studies have been conducted in the Saudi Arabian population which has unique ethnicity and socio-demographic features. This study examined the polymorphisms in exon 2 (allele 1) and intron 8 (allele 2 and allele 3) of VDR gene and their relation to BLLs. As per the CDC guidelines, the recruited lead-exposed workers (N = 130) were categorized to two groups viz., low BLL group (<10 μg/dL) and high BLL group (>10 μg/dL). The low BLL group had a mean BLL of 4.37 μg/dL, while the high BLL group had levels of 18.12 μg/dL (p < 0.001). Overall, the genetic variants, TC and CC in the VDR FokI were significantly associated with a risk of lead toxicity and the allele “C” was a risk factor (p = 0.00026). Furthermore, the TT genotype of VDR ApaI significantly increased the risk of developing lead poisoning (p = 0.0006). The VDR TaqI SNP was not significantly associated with lead toxicity. The highest BLLs for VDR FokI-CC, VDR ApaI-GG, and VDR TaqI-TT genotypes from High BLL group were 18.42, 15.26, and 18.75 μg/dL, respectively. Older age (51–60 years) was found to be a significant confounding factor for BLLs (p = 0.012). Additional studies in larger sample sizes are needed to firmly establish the role of VDR genotypes and genetic susceptibility to lead poisoning

    The effect of alpha-lipoic acid supplementation on anthropometric, glycemic, lipid, oxidative stress, and hormonal parameters in individuals with polycystic ovary syndrome: a systematic review and meta-analysis of randomized clinical trials

    Get PDF
    This systematic review and meta-analysis aimed to examine the effect of the antioxidant alpha-lipoic acid (ALA) on various cardiometabolic risk factors and hormonal parameters in patients with polycystic ovary syndrome (PCOS). We searched PubMed, EMBASE, SCOPUS, Cochrane Library, and Web of Science databases without language restrictions until May 2023 to find randomized controlled trials (RCTs) that assessed the impact of ALA supplementation on anthropometric, glycemic, lipid, oxidative stress, and hormonal parameters in women with PCOS. Outcomes were summarized using the standardized mean difference (SMD) and 95% confidence interval (CI) in a random-effects model. An I2 statistic of >60% established significant between-study heterogeneity. The overall certainty of the evidence for each outcome was determined using the grading of recommendations, assessment, development, and evaluations system. Seven RCTs met the inclusion criteria. The ALA group had significant reductions in fasting blood sugar (fasting blood sugar (FBS), n=7 RCTs, SMD, −0.60; 95% CI, −1.10 to −0.10; I2=63.54%, moderate certainty of evidence) and homeostatic model assessment for insulin resistance (homeostatic model assessment of insulin resistance (HOMA-IR), n=4 RCTs, SMD, −2.03; 95% CI, −3.85 to −0.20; I2=96.32%, low certainty of evidence) compared with the control group. However, significant differences were observed between the groups in body mass index, insulin, estrogen, follicle-stimulating hormone, luteinizing hormone, testosterone, low-density lipoprotein, high-density lipoprotein, triglyceride, total cholesterol, malondialdehyde, or total antioxidant capacity profiles. ALA supplementation improves FBS and HOMA-IR levels in women with PCOS. ALA consumption is an effective complementary therapy for the management of women with PCOS

    Clinico-radiological features, molecular spectrum, and identification of prognostic factors in developmental and epileptic encephalopathy due to inosine triphosphate pyrophosphatase (ITPase) deficiency

    Get PDF
    Developmental and epileptic encephalopathy 35 (DEE 35) is a severe neurological condition caused by biallelic variants in ITPA, encoding inosine triphosphate pyrophosphatase, an essential enzyme in purine metabolism. We delineate the genotypic and phenotypic spectrum of DEE 35, analyzing possible predictors for adverse clinical outcomes. We investigated a cohort of 28 new patients and reviewed previously described cases, providing a comprehensive characterization of 40 subjects. Exome sequencing was performed to identify underlying ITPA pathogenic variants. Brain MRI (magnetic resonance imaging) scans were systematically analyzed to delineate the neuroradiological spectrum. Survival curves according to the Kaplan–Meier method and log-rank test were used to investigate outcome predictors in different subgroups of patients. We identified 18 distinct ITPA pathogenic variants, including 14 novel variants, and two deletions. All subjects showed profound developmental delay, microcephaly, and refractory epilepsy followed by neurodevelopmental regression. Brain MRI revision revealed a recurrent pattern of delayed myelination and restricted diffusion of early myelinating structures. Congenital microcephaly and cardiac involvement were statistically significant novel clinical predictors of adverse outcomes. We refined the molecular, clinical, and neuroradiological characterization of ITPase deficiency, and identified new clinical predictors which may have a potentially important impact on diagnosis, counseling, and follow-up of affected individuals

    Clinico-radiological features, molecular spectrum, and identification of prognostic factors in developmental and epileptic encephalopathy due to inosine triphosphate pyrophosphatase (ITPase) deficiency.

    Get PDF
    Developmental and epileptic encephalopathy 35 (DEE 35) is a severe neurological condition caused by biallelic variants in ITPA, encoding inosine triphosphate pyrophosphatase, an essential enzyme in purine metabolism. We delineate the genotypic and phenotypic spectrum of DEE 35, analyzing possible predictors for adverse clinical outcomes. We investigated a cohort of 28 new patients and reviewed previously described cases, providing a comprehensive characterization of 40 subjects. Exome sequencing was performed to identify underlying ITPA pathogenic variants. Brain MRI (magnetic resonance imaging) scans were systematically analyzed to delineate the neuroradiological spectrum. Survival curves according to the Kaplan-Meier method and log-rank test were used to investigate outcome predictors in different subgroups of patients. We identified 18 distinct ITPA pathogenic variants, including 14 novel variants, and two deletions. All subjects showed profound developmental delay, microcephaly, and refractory epilepsy followed by neurodevelopmental regression. Brain MRI revision revealed a recurrent pattern of delayed myelination and restricted diffusion of early myelinating structures. Congenital microcephaly and cardiac involvement were statistically significant novel clinical predictors of adverse outcomes. We refined the molecular, clinical, and neuroradiological characterization of ITPase deficiency, and identified new clinical predictors which may have a potentially important impact on diagnosis, counseling, and follow-up of affected individuals

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore