421 research outputs found

    A New Linear Logic for Deadlock-Free Session-Typed Processes

    Get PDF
    The π -calculus, viewed as a core concurrent programming language, has been used as the target of much research on type systems for concurrency. In this paper we propose a new type system for deadlock-free session-typed π -calculus processes, by integrating two separate lines of work. The first is the propositions-as-types approach by Caires and Pfenning, which provides a linear logic foundation for session types and guarantees deadlock-freedom by forbidding cyclic process connections. The second is Kobayashi’s approach in which types are annotated with priorities so that the type system can check whether or not processes contain genuine cyclic dependencies between communication operations. We combine these two techniques for the first time, and define a new and more expressive variant of classical linear logic with a proof assignment that gives a session type system with Kobayashi-style priorities. This can be seen in three ways: (i) as a new linear logic in which cyclic structures can be derived and a CYCLE -elimination theorem generalises CUT -elimination; (ii) as a logically-based session type system, which is more expressive than Caires and Pfenning’s; (iii) as a logical foundation for Kobayashi’s system, bringing it into the sphere of the propositions-as-types paradigm

    Fragments of ML Decidable by Nested Data Class Memory Automata

    Full text link
    The call-by-value language RML may be viewed as a canonical restriction of Standard ML to ground-type references, augmented by a "bad variable" construct in the sense of Reynolds. We consider the fragment of (finitary) RML terms of order at most 1 with free variables of order at most 2, and identify two subfragments of this for which we show observational equivalence to be decidable. The first subfragment consists of those terms in which the P-pointers in the game semantic representation are determined by the underlying sequence of moves. The second subfragment consists of terms in which the O-pointers of moves corresponding to free variables in the game semantic representation are determined by the underlying moves. These results are shown using a reduction to a form of automata over data words in which the data values have a tree-structure, reflecting the tree-structure of the threads in the game semantic plays. In addition we show that observational equivalence is undecidable at every third- or higher-order type, every second-order type which takes at least two first-order arguments, and every second-order type (of arity greater than one) that has a first-order argument which is not the final argument

    Correlating matched-filter model for analysis and optimisation of neural networks

    Get PDF
    A new formalism is described for modelling neural networks by means of which a clear physical understanding of the network behaviour can be gained. In essence, the neural net is represented by an equivalent network of matched filters which is then analysed by standard correlation techniques. The procedure is demonstrated on the synchronous Little-Hopfield network. It is shown how the ability of this network to discriminate between stored binary, bipolar codes is optimised if the stored codes are chosen to be orthogonal. However, such a choice will not often be possible and so a new neural network architecture is proposed which enables the same discrimination to be obtained for arbitrary stored codes. The most efficient convergence of the synchronous Little-Hopfield net is obtained when the neurons are connected to themselves with a weight equal to the number of stored codes. The processing gain is presented for this case. The paper goes on to show how this modelling technique can be extended to analyse the behaviour of both hard and soft neural threshold responses and a novel time-dependent threshold response is described

    A domain of spacetime intervals in general relativity

    Get PDF
    Beginning from only a countable dense set of events and the causality relation, it is possible to reconstruct a globally hyperbolic spacetime in a purely order theoretic manner. The ultimate reason for this is that globally hyperbolic spacetimes belong to a category that is equivalent to a special category of domains called interval domains.Comment: 25 page

    Compactness of the space of causal curves

    Full text link
    We prove that the space of causal curves between compact subsets of a separable globally hyperbolic poset is itself compact in the Vietoris topology. Although this result implies the usual result in general relativity, its proof does not require the use of geometry or differentiable structure.Comment: 15 page

    Partial order and a T0T_0-topology in a set of finite quantum systems

    Full text link
    A `whole-part' theory is developed for a set of finite quantum systems Σ(n)\Sigma (n) with variables in Z(n){\mathbb Z}(n). The partial order `subsystem' is defined, by embedding various attributes of the system Σ(m)\Sigma (m) (quantum states, density matrices, etc) into their counterparts in the supersystem Σ(n)\Sigma (n) (for m∣nm|n). The compatibility of these embeddings is studied. The concept of ubiquity is introduced for quantities which fit with this structure. It is shown that various entropic quantities are ubiquitous. The sets of various quantities become T0T_0-topological spaces with the divisor topology, which encapsulates fundamental physical properties. These sets can be converted into directed-complete partial orders (dcpo), by adding `top elements'. The continuity of various maps among these sets is studied

    Dialectica Categories for the Lambek Calculus

    Full text link
    We revisit the old work of de Paiva on the models of the Lambek Calculus in dialectica models making sure that the syntactic details that were sketchy on the first version got completed and verified. We extend the Lambek Calculus with a \kappa modality, inspired by Yetter's work, which makes the calculus commutative. Then we add the of-course modality !, as Girard did, to re-introduce weakening and contraction for all formulas and get back the full power of intuitionistic and classical logic. We also present the categorical semantics, proved sound and complete. Finally we show the traditional properties of type systems, like subject reduction, the Church-Rosser theorem and normalization for the calculi of extended modalities, which we did not have before

    SCC: A Service Centered Calculus

    Get PDF
    We seek for a small set of primitives that might serve as a basis for formalising and programming service oriented applications over global computers. As an outcome of this study we introduce here SCC, a process calculus that features explicit notions of service definition, service invocation and session handling. Our proposal has been influenced by Orc, a programming model for structured orchestration of services, but the SCC’s session handling mechanism allows for the definition of structured interaction protocols, more complex than the basic request-response provided by Orc. We present syntax and operational semantics of SCC and a number of simple but nontrivial programming examples that demonstrate flexibility of the chosen set of primitives. A few encodings are also provided to relate our proposal with existing ones

    Making the most of community energies:Three perspectives on grassroots innovation

    Get PDF
    Grassroots innovations for sustainability are attracting increasing policy attention. Drawing upon a wide range of empirical research into community energy in the UK, and taking recent support from national government as a case study, we apply three distinct analytical perspectives: strategic niche management; niche policy advocacy; and critical niches. Whilst the first and second perspectives appear to explain policy influence in grassroots innovation adequately, each also shuts out more transformational possibilities. We therefore argue that, if grassroots innovation is to realise its full potential, then we need to also pursue a third, critical niches perspective, and open up debate about more socially transformative pathways to sustainability

    The Expectation Monad in Quantum Foundations

    Get PDF
    The expectation monad is introduced abstractly via two composable adjunctions, but concretely captures measures. It turns out to sit in between known monads: on the one hand the distribution and ultrafilter monad, and on the other hand the continuation monad. This expectation monad is used in two probabilistic analogues of fundamental results of Manes and Gelfand for the ultrafilter monad: algebras of the expectation monad are convex compact Hausdorff spaces, and are dually equivalent to so-called Banach effect algebras. These structures capture states and effects in quantum foundations, and also the duality between them. Moreover, the approach leads to a new re-formulation of Gleason's theorem, expressing that effects on a Hilbert space are free effect modules on projections, obtained via tensoring with the unit interval.Comment: In Proceedings QPL 2011, arXiv:1210.029
    • 

    corecore