1,484 research outputs found

    Saving Energy in Mobile Devices for On-Demand Multimedia Streaming -- A Cross-Layer Approach

    Full text link
    This paper proposes a novel energy-efficient multimedia delivery system called EStreamer. First, we study the relationship between buffer size at the client, burst-shaped TCP-based multimedia traffic, and energy consumption of wireless network interfaces in smartphones. Based on the study, we design and implement EStreamer for constant bit rate and rate-adaptive streaming. EStreamer can improve battery lifetime by 3x, 1.5x and 2x while streaming over Wi-Fi, 3G and 4G respectively.Comment: Accepted in ACM Transactions on Multimedia Computing, Communications and Applications (ACM TOMCCAP), November 201

    A high-resolution mm and cm study of the obscured LIRG NGC 4418 - A compact obscured nucleus fed by in-falling gas?

    Get PDF
    The aim of this study is to constrain the dynamics, structure and feeding of the compact nucleous of NGC4418, and to reveal the nature of the main hidden power source: starburst or AGN. We obtained high spatial resolution observations of NGC4418 at 1.4 and 5 GHz with MERLIN, and at 230 and 270 GHz with the SMA very extended configuration. We use the continuum morphology and flux density to estimate the size of the emitting region, the star formation rate and the dust temperature. Emission lines are used to study the kinematics through position-velocity diagrams. Molecular emission is studied with population diagrams and by fitting an LTE synthetic spectrum. We detect bright 1mm line emission from CO, HC3N, HNC and C34S, and 1.4 GHz absorption from HI. The CO 2-1 emission and HI absorption can be fit by two velocity components at 2090 and 2180 km s-1. We detect vibrationally excited HC3N and HNC, with Tvib 300K. Molecular excitation is consistent with a layered temperature structure, with three main components at 80, 160 and 300 K. For the hot component we estimate a source size of less than 5 pc. The nuclear molecular gas surface density of 1e4 Msun pc-2 is extremely high, and similar to that found in the ultra-luminous infrared galaxy (ULIRG) Arp220. Our observations confirm the the presence of a molecular and atomic in-flow, previously suggested by Herschel observations, which is feeding the activity in the center of NGC4418. Molecular excitation confirms the presence of a very compact, hot dusty core. If a starburst is responsible for the observed IR flux, this has to be at least as extreme as the one in Arp220, with an age of 3-10 Myr and a star formation rate >10 Msun yr-1. If an AGN is present, it must be extremely Compton-thick.Comment: 18 pages, 11 figures, Accepted for publication by A&A on 10/6/201

    New insights on the dense molecular gas in NGC253 as traced by HCN and HCO+

    Full text link
    We have imaged the central ~1kpc of the circumnuclear starburst disk in the galaxy NGC253 in the HCN(1-0), HCO+(1-0), and CO(1-0) transitions at 60pc resolution using the Owens Valley Radio Observatory Millimeter-Wavelength Array (OVRO). We have also obtained Atacama Pathfinder Experiment (APEX) observations of the HCN(4-3) and the HCO+(4-3) lines of the starburst disk. We find that the emission from the HCN(1-0) and HCO+(1-0) transitions, both indicators of dense molecular gas, trace regions which are non-distinguishable within the uncertainties of our observations. Even though the continuum flux varies by more than a factor 10 across the starburst disk, the HCN/HCO+ ratio is constant throughout the disk, and we derive an average ratio of 1.1+/-0.2. From an excitation analysis we find that all lines from both molecules are subthermally excited and that they are optically thick. This subthermal excitation implies that the observed HCN/HCO+ line ratio is sensitive to the underlying chemistry. The constant line ratio thus implies that there are no strong abundance gradients across the starburst disk of NGC253. This finding may also explain the variations in L'(HCN)/L'(HCO+) between different star forming galaxies both nearby and at high redshifts.Comment: 9 pages, 12 figures, ApJ in press (volume 666 September

    HCN to HCO^+ Millimeter Line Diagnostics of AGN Molecular Torus I : Radiative Transfer Modeling

    Full text link
    We explore millimeter line diagnostics of an obscuring molecular torus modeled by a hydrodynamic simulation with three-dimensional nonLTE radiative transfer calculations. Based on the results of high-resolution hydrodynamic simulation of the molecular torus around an AGN, we calculate intensities of HCN and HCO^{+} rotational lines as two representative high density tracers. The three-dimensional radiative transfer calculations shed light on a complicated excitation state in the inhomogeneous torus, even though a spatially uniform chemical structure is assumed. Our results suggest that HCN must be much more abundant than HCO^{+} in order to obtain a high ratio (RHCN/HCO+∼2R_{HCN/HCO+}\sim 2) observed in some of the nearby galaxies. There is a remarkable dispersion in the relation between integrated intensity and column density, indicative of possible shortcomings of HCN(1-0) and HCO^{+}(1-0) lines as high density tracers. The internal structures of the inhomogeneous molecular torus down to subparsec scale in external galaxies will be revealed by the forthcoming Atacama Large Millimeter/submillimeter Array (ALMA). The three-dimensional radiative transfer calculations of molecular lines with high-resolution hydrodynamic simulation prove to be a powerful tool to provide a physical basis for molecular line diagnostics of the central regions of external galaxies.Comment: 29 pages, 13 figures, Accepted for publication in ApJ, For high resolution figures see http://alma.mtk.nao.ac.jp/~masako/MS72533v2.pd

    13CO(J=1−−0)^{13}CO(J = 1 -- 0) Depression in Luminous Starburst Mergers

    Full text link
    It is known that the class of luminous starburst galaxies tends to have higher R=12CO(J=1−−0)/13CO(J=1−−0)R =^{12}CO(J=1--0)/^{13}CO(J=1--0) integrated line intensity ratios (R>20R>20) than normal spiral galaxies (R∼10R \sim 10). Since most previous studies investigated only RR, it remains uncertain whether the luminous starburst galaxies are overabundant in 12^{12}CO or underabundant in 13^{13}CO. Here we propose a new observational test to examine this problem. Our new test is to compare far-infrared luminosities [LL(FIR)] with those of 12^{12}CO and 13CO[L(12CO)^{13}CO [L(^{12}CO) and L(13CO)L(^{13}CO), respectively]. It is shown that there is a very tight correlation between L(12CO)L(^{12}CO) and L(FIR), as found in many previous studies. However, we find that the 13^{13}CO luminosities of the high-R galaxies are lower by a factor of three on the average than those expected from the correlation for the remaining galaxies with ordinary RR values. Therefore, we conclude that the observed high RR values for the luminous starburst galaxies are attributed to their lower 13^{13}CO line intensities.Comment: 9 pages (aaspp4.sty), 3 postscript figures (embedded). Accepted for publication in Astrophysical Journal Letter

    Deep ALMA imaging of the merger NGC1614 - Is CO tracing a massive inflow of non-starforming gas?

    Get PDF
    Observations of the molecular gas over scales of 0.5 to several kpc provide crucial information on how gas moves through galaxies, especially in mergers and interacting systems, where it ultimately reaches the galaxy center, accumulates, and feeds nuclear activity. Studying the processes involved in the gas transport is an important step forward to understand galaxy evolution. 12CO, 13CO and C18O1-0 high-sensitivity ALMA observations were used to assess properties of the large-scale molecular gas reservoir and its connection to the circumnuclear molecular ring in NGC1614. The role of excitation and abundances were studied in this context. Spatial distributions of the 12CO and 13CO emission show significant differences. 12CO traces the large-scale molecular gas reservoir, associated with a dust lane that harbors infalling gas. 13CO emission is - for the first time - detected in the large-scale dust lane. Its emission peaks between dust lane and circumnuclear molecular ring. A 12CO-to-13CO1-0 intensity ratio map shows high values in the ring region (~30) typical for the centers of luminous galaxy mergers and even more extreme values in the dust lane (>45). This drop in ratio is consistent with molecular gas in the dust lane being in a diffuse, unbound state while being funneled towards the nucleus. We find a high 16O-to-18O abundance ratio in the starburst region (>900), typical of quiescent disk gas - by now, the starburst is expected to have enriched the nuclear ISM in 18O relative to 16O. The massive inflow of gas may be partially responsible for the low 18O/16O abundance since it will dilute the starburst enrichment with unprocessed gas from greater radii. The 12CO-to-13CO abundance is consistent with this scenario. It suggests that the nucleus of NGC1614 is in a transient phase of evolution where starburst and nuclear growth are fuelled by returning gas from the minor merger event.Comment: 10 pages, 9 figures, accepted for publication in A&

    Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest

    Get PDF
    Nighttime vegetative uptake of carbonyl sulfide (COS) can exist due to the incomplete closure of stomata and the light independence of the enzyme carbonic anhydrase, which complicates the use of COS as a tracer for gross primary productivity (GPP). In this study we derived nighttime COS fluxes in a boreal forest (the SMEAR II station in Hyytiälä, Finland; 61°51′ N, 24°17′ E; 181 m a.s.l.) from June to November 2015 using two different methods: eddy-covariance (EC) measurements (FCOS-EC) and the radon-tracer method (FCOS-Rn). The total nighttime COS fluxes averaged over the whole measurement period were −6.8 ± 2.2 and −7.9 ± 3.8 pmol m−2 s−1 for FCOS-Rn and FCOS-EC, respectively, which is 33–38 % of the average daytime fluxes and 21 % of the total daily COS uptake. The correlation of 222Rn (of which the source is the soil) with COS (average R2  =  0.58) was lower than with CO2 (0.70), suggesting that the main sink of COS is not located at the ground. These observations are supported by soil chamber measurements that show that soil contributes to only 34–40 % of the total nighttime COS uptake. We found a decrease in COS uptake with decreasing nighttime stomatal conductance and increasing vapor-pressure deficit and air temperature, driven by stomatal closure in response to a warm and dry period in August. We also discuss the effect that canopy layer mixing can have on the radon-tracer method and the sensitivity of (FCOS-EC) to atmospheric turbulence. Our results suggest that the nighttime uptake of COS is mainly driven by the tree foliage and is significant in a boreal forest, such that it needs to be taken into account when using COS as a tracer for GPP

    Antiarrhythmic Effects of Carvedilol and Flecainide in Cardiomyocytes Derived from Catecholaminergic Polymorphic Ventricular Tachycardia Patients

    Get PDF
    Mutations in the cardiac ryanodine receptor (RYR2) are the leading cause for catecholaminergic polymorphic ventricular tachycardia (CPVT). In this study, we evaluated antiarrhythmic efficacy of carvedilol and flecainide in CPVT patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) carrying different mutations in RYR2. iPSC-CMs were generated from skin biopsies of CPVT patients carrying exon 3 deletion and IA115 or V4653F mutation in RYR2 and of a healthy individual. Ca2+ kinetics and drug effects were studied with Fluo-4 AM indicator. Carvedilol abolished Ca2+ abnormalities in 31% of L4115F, 36% of V4653F, and 46% of exon 3 deletion carrying CPVT cardiomyocytes and flecainide 33%, 30%, and 52%, respectively. Both drugs lowered the intracellular Ca2+ level and beating rate of the cardiomyocytes significantly. Moreover, flecainide caused abnormal Ca2+ transients in 61% of controls compared to 26% of those with carvedilol. Carvedilol and flecainide were equally effective in CPVT iPSC-CMs. However, flecainide induced arrhythmias in 61% of control cells. CPVT cardiomyocytes carrying the exon 3 deletion had the most severe Ca2+ abnormalities, but they had the best response to drug therapies. According to this study, the arrhythmia-abolishing effect of neither of the drugs is optimal. iPSC-CMs provide a unique platform for testing drugs for CPVT.Peer reviewe

    Mutation-specific differences in arrhythmias and drug responses in CPVT patients : simultaneous patch clamp and video imaging of iPSC derived cardiomyocytes

    Get PDF
    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited cardiac disease characterized by arrhythmias under adrenergic stress. Mutations in the cardiac ryanodine receptor (RYR2) are the leading cause for CPVT. We characterized electrophysiological properties of CPVT patient-specific induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) carrying different mutations in RYR2 and evaluated effects of carvedilol and flecainide on action potential (AP) and contractile properties of hiPSC-CMs. iPSC-CMs were generated from skin biopsies of CPVT patients carrying exon 3 deletion (E3D) and L4115F mutation in RYR2. APs and contractile movement were recorded simultaneously from the same hiPSC-CMs. Differences in AP properties of ventricular like CMs were seen in CPVT and control CMs: APD90 of both E3D (n = 20) and L4115F (n = 25) CPVT CMs was shorter than in control CMs (n = 15). E3D-CPVT CMs had shortest AP duration, lowest AP amplitude, upstroke velocity and more depolarized diastolic potential than controls. Adrenaline had positive and carvedilol and flecainide negative chronotropic effect in all hiPSC CMs. CPVT CMs had increased amount of delayed after depolarizations (DADs) and early after depolarizations (EADs) after adrenaline exposure. E3D CPVT CMs had the most DADs, EADs, and tachyarrhythmia. Discordant negatively coupled alternans was seen in L4115F CPVT CMs. Carvedilol cured almost all arrhythmias in L4115F CPVT CMs. Both drugs decreased contraction amplitude in all hiPSC CMs. E3D CPVT CMs have electrophysiological properties, which render them more prone to arrhythmias. iPSC-CMs provide a unique platform for disease modeling and drug screening for CPVT. Combining electrophysiological measurements, we can gain deeper insight into mechanisms of arrhythmias.Peer reviewe
    • …
    corecore