5 research outputs found

    Mycobacterial persistence requires the utilization of host cholesterol

    No full text
    A hallmark of tuberculosis is the ability of the causative agent, Mycobacterium tuberculosis, to persist for decades despite a vigorous host immune response. Previously, we identified a mycobacterial gene cluster, mce4, that was specifically required for bacterial survival during this prolonged infection. We now show that mce4 encodes a cholesterol import system that enables M. tuberculosis to derive both carbon and energy from this ubiquitous component of host membranes. Cholesterol import is not required for establishing infection in mice or for growth in resting macrophages. However, this function is essential for persistence in the lungs of chronically infected animals and for growth within the IFN-γ-activated macrophages that predominate at this stage of infection. This finding indicates that a major effect of IFN-γ stimulation may be to sequester potential pathogens in a compartment devoid of more commonly used nutrients. The unusual capacity to catabolize sterols allows M. tuberculosis to circumvent this defense and thereby sustain a persistent infection

    FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells

    No full text
    Fas-associated death domain protein (FADD) and caspase-8 (casp8) are vital intermediaries in apoptotic signaling induced by tumor necrosis factor family ligands. Paradoxically, lymphocytes lacking FADD or casp8 fail to undergo normal clonal expansion following antigen receptor cross-linking and succumb to caspase-independent cell death upon activation. Here we show that T cells lacking FADD or casp8 activity are subject to hyperactive autophagic signaling and subvert a cellular survival mechanism into a potent death process. T cell autophagy, enhanced by mitogenic signaling, recruits casp8 through interaction with FADD:Atg5-Atg12 complexes. Inhibition of autophagic signaling with 3-methyladenine, dominant-negative Vps34, or Atg7 shRNA rescued T cells expressing a dominant-negative FADD protein. The necroptosis inhibitor Nec-1, which blocks receptor interacting protein kinase 1 (RIP kinase 1), also completely rescued T cells lacking FADD or casp8 activity. Thus, while autophagy is necessary for rapid T cell proliferation, our findings suggest that FADD and casp8 form a feedback loop to limit autophagy and prevent this salvage pathway from inducing RIPK1-dependent necroptotic cell death. Thus, linkage of FADD and casp8 to autophagic signaling intermediates is essential for rapid T cell clonal expansion and may normally serve to promote caspase-dependent apoptosis under hyperautophagic conditions, thereby averting necrosis and inflammation in vivo

    Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity

    No full text
    Caspase-8 (casp8) is required for extrinsic apoptosis, and mice deficient in casp8 fail to develop and die in utero while ultimately failing to maintain the proliferation of T cells, B cells, and a host of other cell types. Paradoxically, these failures are not caused by a defect in apoptosis, but by a presumed proliferative function of this protease. Indeed, following mitogenic stimulation, T cells lacking casp8 or its adaptor protein FADD (Fas-associated death domain protein) develop a hyperautophagic morphology, and die a programmed necrosis-like death process termed necroptosis. Recent studies have demonstrated that receptor-interacting protein kinases (RIPKs) RIPK1 and RIPK3 together facilitate TNF-induced necroptosis, but the precise role of RIPKs in the demise of T cells lacking FADD or casp8 activity is unknown. Here we demonstrate that RIPK3 and FADD have opposing and complementary roles in promoting T-cell clonal expansion and homeostasis. We show that the defective proliferation of T cells bearing an interfering form of FADD (FADDdd) is rescued by crossing with RIPK3−/− mice, although such rescue ultimately leads to lymphadenopathy. Enhanced recovery of these double-mutant T cells following stimulation demonstrates that FADD, casp8, and RIPK3 are all essential for clonal expansion, contraction, and antiviral responses. Finally, we demonstrate that caspase-mediated cleavage of RIPK1-containing necrosis inducing complexes (necrosomes) is sufficient to prevent necroptosis in the face of death receptor signaling. These studies highlight the “two-faced” nature of casp8 activity, promoting clonal expansion in some situations and apoptotic demise in others

    Tumor necrosis factor-related apoptosis-inducing ligand in T cell development: Sensitivity of human thymocytes

    No full text
    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a recently identified member of the tumor necrosis factor cytokine superfamily. TRAIL has been shown to induce apoptosis in various tumor cell lines, whereas most primary cells seem to be resistant. These observations have raised considerable interest in the use of TRAIL in tumor therapy. Yet little is known about the physiological function of TRAIL. This is particularly the case in the immune system, where TRAIL has been suggested by some to be involved in target cell killing and lymphocyte death. We have developed a panel of mAbs and soluble proteins to address the role of TRAIL in lymphocyte development. These studies demonstrate activation-induced sensitization of thymocytes to TRAIL-mediated apoptosis and expression of the apoptosis-inducing TRAIL receptors. However, with the use of several model systems, our subsequent experiments rule out the possibility that TRAIL plays a major role in antigen-induced deletion of thymocytes. In contrast to thymocytes, there is no up-regulation of TRAIL receptors in peripheral T cells on activation, which remain resistant to TRAIL. Thus, susceptibility to TRAIL-induced apoptosis is controlled differently by central and peripheral T cells

    Polymethinfarbstoffe mit Lichtabsorption im Nahen Infrarot

    No full text
    corecore