868 research outputs found

    Spontaneous symmetry breaking and the p0p \to 0 limit

    Get PDF
    We point out a basic ambiguity in the p0p \to 0 limit of the connected propagator in a spontaneously broken phase. This may represent an indication that the conventional singlet Higgs boson, rather than being a purely massive field, might have a gap-less branch. This would dominate the energy spectrum for p0{\bf{p}} \to 0 and give rise to a very weak, long-range force. The natural interpretation is in terms of density fluctuations of the `Higgs condensate': in the region of very long wavelengths, infinitely larger than the Fermi scale, it cannot be treated as a purely classical c-number field.Comment: 17 pages, LaTex, small changes and some comments adde

    Functional expression of electrogenic sodium bicarbonate cotransporter 1 (NBCe1) in mouse cortical astrocytes is dependent on S255-257 and regulated by mTOR

    Get PDF
    The electrogenic sodium bicarbonate cotransporter 1, NBCe1 (SLC4A4), is the major bicarbonate transporter expressed in astrocytes. It is highly sensitive for bicarbonate and the main regulator of intracellular, extracellular, and synaptic pH, thereby modulating neuronal excitability. However, despite these essential functions, the molecular mechanisms underlying NBCe1-mediated astrocytic response to extracellular pH changes are mostly unknown. Using primary mouse cortical astrocyte cultures, we investigated the effect of long-term extracellular metabolic alkalosis on regulation of NBCe1 and elucidated the underlying molecular mechanisms by immunoblotting, biotinylation of surface proteins, intracellular H+ recording using the H+ -sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein, and phosphoproteomic analysis. The results showed significant downregulation of NBCe1 activity following metabolic alkalosis without influencing protein abundance or surface expression of NBCe1. During alkalosis, the rate of intracellular H+ changes upon challenging NBCe1 was decreased in wild-type astrocytes, but not in cortical astrocytes from NBCe1-deficient mice. Alkalosis-induced decrease of NBCe1 activity was rescued after activation of mTOR signaling. Moreover, mass spectrometry revealed constitutively phosphorylated S255-257 and mutational analysis uncovered these residues being crucial for NBCe1 transport activity. Our results demonstrate a novel mTOR-regulated mechanism by which NBCe1 functional expression is regulated. Such mechanism likely applies not only for NBCe1 in astrocytes, but in epithelial cells as well

    Recursive Graphical Construction of Feynman Diagrams in phi^4 Theory: Asymmetric Case and Effective Energy

    Get PDF
    The free energy of a multi-component scalar field theory is considered as a functional W[G,J] of the free correlation function G and an external current J. It obeys non-linear functional differential equations which are turned into recursion relations for the connected Greens functions in a loop expansion. These relations amount to a simple proof that W[G,J] generates only connected graphs and can be used to find all such graphs with their combinatoric weights. A Legendre transformation with respect to the external current converts the functional differential equations for the free energy into those for the effective energy Gamma[G,Phi], which is considered as a functional of the free correlation function G and the field expectation Phi. These equations are turned into recursion relations for the one-particle irreducible Greens functions. These relations amount to a simple proof that Gamma[G,J] generates only one-particle irreducible graphs and can be used to find all such graphs with their combinatoric weights. The techniques used also allow for a systematic investigation into resummations of classes of graphs. Examples are given for resumming one-loop and multi-loop tadpoles, both through all orders of perturbation theory. Since the functional differential equations derived are non-perturbative, they constitute also a convenient starting point for other expansions than those in numbers of loops or powers of coupling constants. We work with general interactions through four powers in the field.Comment: 34 pages; abstract expanded; section IV.E about absorption of tadpoles and one related reference added; eqs. (20) and (23) corrected; further references added; some minor beautifications; to be published by Phys.Rev.

    Competing energy scales in topological superconducting heterostructures

    Get PDF
    Artificially engineered topological superconductivity has emerged as a viable route to create Majorana modes. In this context, proximity-induced super-conductivity in materials with a sizable spin-orbit coupling has been intensively investigated in recent years. Although there is convincing evidence that superconductivity may indeed be induced, it has been difficult to elucidate its topological nature. Here, we engineer an artificial topological superconductor by progressively introducing superconductivity (Nb), strong spin-orbital coupling (Pt), and topological states (Bi2Te3). Through spectroscopic imaging of superconducting vortices within the bare s-wave superconducting Nb and within proximitized Pt and Bi2Te3 layers, we detect the emergence of a zero-bias peak that is directly linked to the presence of topological surface states. Our results are rationalized in terms of competing energy trends which are found to impose an upper limit to the size of the minigap separating Majorana and trivial modes, its size being ultimately linked to fundamental materials properties

    A logical approach for behavioural composition of scenario-based models

    Get PDF
    As modern systems become more complex, design approaches model different aspects of the system separately. When considering (intra and inter) system interactions, it is usual to model individual scenarios using UML’s sequence diagrams. Given a set of scenarios we then need to check whether these are consistent and can be combined for a better understanding of the overall behaviour. This paper addresses this by presenting a novel formal technique for composing behavioural models at the metamodel level through exact metamodel restriction (EMR). In our approach a sequence diagram can be completely described by a set of logical constraints at the metamodel level. When composing sequence diagrams we take the union of the sets of logical constraints for each diagram and additional behavioural constraints that describe the matching composition glue. A formal semantics for composition in accordance with the glue guides our model transformation to Alloy. Alloy’s fully automated constraint solver gives us the solution. Our technique has been implemented as an Eclipse plugin SD2Alloy.Postprin

    Specification-driven test generation for model transformations

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-30476-7_3Proceedings of 5th International Conference, ICMT 2012, Prague, Czech Republic, May 28-29, 2012Testing model transformations poses several challenges, among them the automatic generation of appropriate input test models and the specification of oracle functions. Most approaches to the generation of input models ensure a certain level of source meta-model coverage, whereas the oracle functions are frequently defined using query or graph languages. Both tasks are usually performed independently regardless their common purpose, and sometimes there is a gap between the properties exhibited by the generated input models and those demanded to the transformations (as given by the oracles). Recently, we proposed a formal specification language for the declarative formulation of transformation properties (invariants, pre- and postconditions) from which we generated partial oracle functions that facilitate testing of the transformations. Here we extend the usage of our specification language for the automated generation of input test models by constraint solving. The testing process becomes more intentional because the generated models ensure a certain coverage of the interesting properties of the transformation. Moreover, we use the same specification to consistently derive both the input test models and the oracle functions.Work funded by the Spanish Ministry of Economy and Competitivity (TIN2011-24139) and by the R&D programme of Madrid Region (S2009/TIC-1650

    Parity-Violating Electron-Deuteron Scattering

    Get PDF
    The longitudinal asymmetry due to Z0Z^0 exchange is calculated in quasi-elastic electron-deuteron scattering at momentum transfers Q20.1|Q^2| \simeq 0.1 GeV2^2 relevant for the SAMPLE experiment. The deuteron and pnpn scattering-state wave functions are obtained from solutions of a Schr\"odinger equation with the Argonne v18v_{18} potential. Electromagnetic and weak neutral one- and two-nucleon currents are included in the calculation. The two-nucleon currents of pion range are shown to be identical to those derived in Chiral Perturbation Theory. The results indicate that two-body contributions to the asymmetry are small (\simeq 0.2%) around the quasi-elastic peak, but become relatively more significant (\simeq 3%) in the high-energy wing of the quasi-elastic peak.Comment: 23 pages, 10 figure

    Совершенствование технологического процесса изготовления детали «Корпус»

    Get PDF
    Совершенствование технологического процесса изготовления детали «Корпус». Технологический раздел, Конструкторский раздел, Технико-экономическое обоснование ,Социальная ответственность.Perfection of technological process of manufacturing parts "Housing". Technological section, design section, Feasibility Study, Social Responsibility

    Proteomics uncover EPHA2 as a potential novel therapeutic target in colorectal cancer cell lines with acquired cetuximab resistance.

    Get PDF
    BACKGROUND: In metastatic colorectal cancer (mCRC), acquired resistance against anti-EGFR targeted monoclonal antibodies, such as cetuximab (CET), was shown to be frequently caused by activating alterations in the RAS genes KRAS or NRAS. To this day, no efficient follow-up treatment option has emerged to treat mCRC in such a setting of resistance. METHODS: To uncover potential targets for second-line targeted therapies, we used mass-spectrometric proteomics to shed light on kinome reprogramming in an established cellular model of acquired, KRAS-associated CET resistance. RESULTS: This CET resistance was reflected by significant changes in the kinome, most of them individual to each cell line. Interestingly, all investigated resistant cell lines displayed upregulation of the Ephrin type-A receptor 2 (EPHA2), a well-known driver of traits of progression. Expectedly resistant cell lines displayed increased migration (p < 0.01) that was significantly reduced by targeting the EPHA2 signalling axis using RNA interference (RNAi) (p < 0.001), ephrin-A1 stimulation (p < 0.001), dasatinib (p < 0.01), or anti-EPHA2 antibody treatment (p < 0.001), identifying it as an actionable target in mCRC with acquired CET resistance. CONCLUSION: These results highlight EPHA2 and its role in mCRC with KRAS-gene mutated acquired CET resistance and support its use as a potential actionable target for the development of future precision medicine therapies
    corecore