
A Logical Approach for Behavioural Composition of
Scenario-based Models

J. Küster Filipe Bowles1, B. Bordbar2, and M. Alwanain2

1 School of Computer Science, University of St Andrews
Jack Cole Building, North Haugh, St Andrews KY16 9SX, UK

jkfb@st-andrews.ac.uk
2 School of Computer Science, University of Birmingham

Edgbaston, Birmingham B15 2TT, UK
{b.bordbar|m.i.alwanain}@cs.bham.ac.uk

Abstract. As modern systems become more complex, design approaches model
different aspects of the system separately. When considering (intra and inter) sys-
tem interactions, it is usual to model individual scenarios using UML’s sequence
diagrams. Given a set of scenarios we then need to check whether these are con-
sistent and can be combined for a better understanding of the overall behaviour.
This paper addresses this by presenting a novel formal technique for composing
behavioural models at the metamodel level through exact metamodel restriction
(EMR). In our approach a sequence diagram can be completely described by a
set of logical constraints at the metamodel level. When composing sequence di-
agrams we take the union of the sets of logical constraints for each diagram and
additional behavioural constraints that describe the matching composition glue. A
formal semantics for composition in accordance with the glue guides our model
transformation to Alloy. Alloy’s fully automated constraint solver gives us the
solution. Our technique has been implemented as an Eclipse plugin SD2Alloy.

Keywords: Sequence diagrams, Behavioural Composition, Event Structures, Alloy

1 Introduction

As modern systems become more complex, design approaches model different aspects
of the system separately. When considering (intra and inter) system interactions, it is
usual to model individual scenarios using UML’s sequence diagrams. Given a set of
scenarios we then need to check whether these are consistent and can be combined for
a better understanding of the overall behaviour. The overall behaviour of the system can
be obtained step by step by composing individual scenario-based models.

Composing systems manually can only be done for small systems. As a result, in
recent years, various methods for automated model composition have been introduced
[4, 6, 18, 13, 15, 19–21, 23]. Most of these methods involve introducing algorithms to
produce a composite model from smaller models originating from partial specifications
[13]. By contrast, in this paper we focus on the composition of models via constraint
solvers. This corresponds to producing a number of constraints capturing models and
using an automated solver to find a solution that produces the composed model. In this

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/76986496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

paper, we use Alloy [12] for finding the solution. Using Alloy for model composition
is an active area of research [19, 23]. Whilst most existing research focuses on static
models, the focus of this paper is on dynamic models. The proposed method in this pa-
per consists of two steps. First, create the logical constraints that uniquely characterise
each model by restricting the metamodels. Second, produce behavioural constraints for
combining the models. These consist of constraints indicating how elements from both
models may be matched and additional constraints such as orderings that may have to
be preserved. The augmented model for the composition (if existing) needs to satisfy
the conjunction of all these constraints. The composed model is semantically equiva-
lent to one obtained by an enriched form of parallel composition with synchronisation
and additional constraints on permitted combined behaviour. The automatic generation
of such a solution is the main novelty and contribution of this paper.

In general, metamodels represent the model elements and their relationships. Log-
ical statements written in the context of metamodels play a key role in expressing the
well-definedness of model elements, defining model equality, and so on. We extend
the use of logical constraints and for a given model we produce further constraints to
uniquely determine the model. We refer to the process of identifying such logical con-
straints as Exact Metamodel Restriction (EMR). As we show in this paper, EMR can
be used in the automated instantiation of models via constraint solvers. For example,
in [2] starting from any UML sequence diagram, using the Alloy model finder for the
sequence diagram metamodel and correct set of constraints, Alloy can be used to au-
tomatically recreate the original sequence diagram. Given any two models M1 and M2

representing two partial specifications (e.g., two sequence diagrams), through EMR we
produce two sets of constrains L1 and L2 on their metamodels that uniquely identify
them. To compose the two models we may require all constraints in the two sets to be
true. This would be a very restrictive form of composition. Instead we give the designer
a novel way to influence the obtained composition by specifying behaviour that should
never occur or sequences of events that must occur in a given order. In other words,
it allows the designer to prioritise on specified behaviour. We refer to these additional
constraints as behavioural composition glue and present a formal semantics for it.

The notion of glue is not new and is also used within software architecture to de-
scribe and formalise component connectors [1, 8]. Our interpretation of glue here is
nonetheless more generic and not only a syntactic matching between component ele-
ments. Our behavioural glue gives us a new set of constraints Lg which specifies how
the models should be glued together to produce the intended composition. Given the
sets of constraints L1, L2 and Lg , and provided there are no conflicts between them,
the models can be composed automatically using Alloy. If there are conflicts between
the constraints, Alloy will point out the conflicting statements so that we can redesign
the models or the constraints used for the composition. Although the focus of work is
on sequence diagrams, the suggested method can be applied to all models with a trace-
based semantics. We have applied the method to sequence diagrams and produced an
Eclipse plugin which was described in [2]. This work considerably extends the work in
[2] by going beyond composition based on syntactic matching of model elements and
focusing on the formalisation of behavioural glue for composition.

The paper is organised as follows. Section 2 describes interactions in UML and
introduces an example which is used throughout the paper to illustrate our approach.
Section 3 introduces labelled event structures (LES), our semantic interpretation of in-
teractions and a guide to the correct composition solution. Section 4 shows the trans-
formation into Alloy. Composition is treated with LES in Section 5 and with Alloy in
Section 6. Related work is described in Section 7. Section 8 concludes the paper.

2 Interactions in UML

Sequence diagrams are described in UML’s superstructure specification [17] both through
a concrete and an abstract syntax. The concrete syntax consists of the graphical nota-
tion for a sequence diagram, whereas the abstract syntax is given by a metamodel which
defines all the elements of a sequence diagram model and their possible relationships.
An instance of the metamodel corresponds to a concrete sequence diagram.

Concrete Syntax: An interaction captured by a sequence diagram involves a group
of objects which exchange messages between each other to achieve a particular goal.
Each object has a vertical dashed line called lifeline showing the existence of the ob-
ject at a particular time. Points along the lifeline are called locations (a terminology
borrowed from LSCs [11]) and denote the occurrence of events. The order of locations
along a lifeline is significant denoting, in general, the order in which the corresponding
events occur. An interaction between several objects consists of one or more messages,
but may be given further structure through so-called interaction fragments. There are
several kinds of interaction fragments including seq (sequential behaviour), alt (alterna-
tive behaviour), par (parallel behaviour), neg (forbidden behaviour), assert (mandatory
behaviour), loop (iterative behaviour), and so on [17].

Consider the following sequence diagrams which show a slightly adapted example
from [10]. Fig. 1 (left) shows an interaction with two consecutive interaction fragments
(a parallel followed by an alternative fragment), and Fig. 1 (right) shows a different
interaction involving the same instances and a few additional messages.

l9

alt

l0

l1

l2

l3

l4

l5

l6

l7

l8

par

sd 1
a:A b:B

m1

i

m2

j

m3

l4

sd 2
a:A b:B

m5

l0

l6

l7

l8

m1

l2
new

l3

l1

m2

l5
m4alt

Fig. 1. Two sequence diagrams with fragments involving the same object instances.

InteractionConstraint

InteractionOperand

interactionOperator:InteractionOperatorKind

CombinedFragment

GeneralOrdering

Message

+events

{ordered}

+covered

* 1

+sendEvent

* *

*

+guard

*

+enclosingOperand

0..1

1

+operand1..*

0..1

0..1

*

0..1

*

+next 1

*

*

+covered

+coveredBy
+fragment

0..1

+enclosingInteraction

0..10..1

0..1 0..1
+receiveEvent

11

InteractionFragment

OccurrenceSpecification Lifeline

Interaction

MessageEnd

Fig. 2. The Interactions Metamodel.

In both diagrams, all messages are sent asynchronously between objects a and b
(only message new is sent by b to a). The locations along the lifeline of object a are
shown explicitly in both diagrams. The importance of locations is described later in
the paper. In particular, the distinction between the syntactic notion of a location on a
sequence diagram from its semantic counterpart of an event will be clarified. In Fig. 1
messages i and m1 are sent/received in parallel followed by message j or message m2

(alternative), and further followed by message m3 (irrespective of the previous alterna-
tive choosen). In Fig. 1, three messages are sent/received before reaching an alternative
fragment and choosing between messages m4 or m5. These diagrams will be used to
show how we can compose diagrams under certain constraints.

Abstract Syntax: A metamodel can be understood as a model of a collection of
models. A metamodel is usually a structural model given as a UML class diagram often
with additional constraints given in UML’s constraint language OCL. Metamodels can
be built for both static and dynamic models but focus only on the structural aspects of
the model. In this paper we look at sequence diagrams. The metamodel of a sequence
diagram, also known as an interaction, shows the structure of such a diagram in terms
of the model elements present and their relationships. The dynamic interpretation is not
given in the metamodel, and must be defined separately. See ours in Section 3.

The UML superstructure specification [17] defines the interaction’s metamodel in a
package showing different elements and their relationships separately in different dia-
grams. To make the presentation simpler, we use a subset of the metamodel for interac-
tions and show it as one class diagram in Fig. 2. We capture the main notions that we
need for the present paper.

An Interaction contains zero or more instances of Lifeline, Message and
InteractionFragment. A Message usually has a sendEvent MessageEnd and a
receiveEvent MessageEnd associated to it. In the present paper, we assume that
MessageEnd (an abstract class) is always a special kind of OccurrenceSpecification

called MessageOccurrenceSpecification (not shown). It is possible for a Message
to have been found, or similarly lost, in which case it does not have a sendEvent or
a receiveEvent. A Message cannot be simultaneously found and lost. A Message

has attributes messageKind and messageSort (not shown in the diagram). These at-
tributes have a type with the same name which are enumeration types used to indicate
whether a message is lost, found, complete or unknown (MessageKind), or a syn-
chronous/asynchronous call, create Message and so on (MessageSort). A Lifeline

has attributes for the name and class associated to the object that is denoted by the
lifeline (not shown in the diagram). An InteractionFragment is an abstract class
which is further specialised into an OccurrenceSpecification, an Interaction,
a CombinedFragment or an InteractionOperand. The locations mentioned in Sec-
tion 2 correspond to instances of OccurrenceSpecification. These are the or-
dered events that cover a Lifeline. A GeneralOrdering represents a binary re-
lation between two OccurrenceSpecifications. The metamodel contains relations
before and after, but we restrict ourselves to a relation next which is all we require
for our purposes. A CombinedFragment has an attribute interactionOperator of
enumeration type InteractionOperatorKind (par, alt, seq, loop, assert, and
so on), and contains one or more operands which are InteractionOperands. An
InteractionOperand may have a guard which is an InteractionConstraint.
An InteractionOperand encloses either several OccurrenceSpecifications, an
Interaction or another CombinedFragment indicating nesting of fragments.

An instance of the metamodel represents a concrete interaction or sequence dia-
gram. The interaction from Fig. 1 can be captured using the abstract syntax as an in-
stance of the metamodel (not shown here).

We have developed a tool SD2Alloy that takes a sequence diagram described by its
abstract syntax and transforms it into an Alloy model. Alloy [12] is a declarative textual
modeling language based on first-order relational logic. Alloy is supported by a fully
automated constraint solver Alloy Analyzer which enables the analysis of system prop-
erties by searching for instances of the model. It is possible to check whether certain
properties of the system are present. This is achieved via an automated translation of
the model into a Boolean expression, which is then analysed by SAT solvers such as
SAT4J [5] embedded within the Alloy Analyzer.

3 Semantics of Interactions

The dynamic interpretation of interactions is done in this paper using labelled event
structures [22]. Several possible semantics for sequence diagrams have been defined
(see [16] for an overview). Labelled event structures (LESs) are very suitable to describe
the traces of execution in sequence diagrams being able to capture directly the notions
available such as sequential, parallel and iterative behaviour (or the unfoldings thereof)
as well as nondeterminism. For each of the notions we use one of the relations available
over events: causality, nondeterministic choice and true concurrency. LESs are the only
true-concurrent semantics for sequence diagrams available and first defined in [14].
We recall the main notions used for modelling sequence diagrams with LES. We later
extend our semantics to model composition of diagrams with glue constraints.

Prime event structures [22], or event structures for short, describe distributed com-
putations as event occurrences together with binary relations for expressing causal de-
pendency (called causality) and nondeterminism (called conflict). The causality relation
implies a (partial) order among event occurrences, while the conflict relation expresses
how the occurrence of certain events excludes the occurrence of others. From the two re-
lations defined on the set of events, a further relation is derived, namely the concurrency
relation co. Two events are concurrent if and only if they are completely unrelated, i.e.,
neither related by causality nor by conflict. The formal definition as defined for instance
in [22] is as follows.

Definition 1 An event structure is a tripleE = (Ev,→∗,#) whereEv is a set of events
and→∗,# ⊆ Ev×Ev are binary relations called causality and conflict, respectively.
Causality→∗ is a partial order. Conflict # is symmetric and irreflexive, and propagates
over causality, i.e., e#e

′ →∗ e′′ ⇒ e#e
′′

for all e, e
′
, e

′′ ∈ Ev. Two events e, e
′ ∈ Ev

are concurrent, e co e
′

iff ¬(e→∗ e′ ∨ e′ →∗ e ∨ e#e′).

We omit further technical details on the model, but note that for the application of
event structures as a semantic model for sequence diagrams we use discrete event struc-
tures. Discreteness imposes a finiteness constraint on the model, i.e., there are always
only a finite number of causally related predecessors to an event, known as the local
configuration of the event (written ↓ e). A further motivation for this constraint is given
by the fact that every execution has a starting point or configuration.

Event structures are enriched with a labelling function µ : Ev → L that maps each
event onto an element of the set L. This labelling function is necessary to establish a
connection between the semantic model (event structure) and the syntactic model (here
a sequence diagram). The labelling function used here is a partial function. Intuitively,
each location marked along a lifeline of an object in a sequence diagram corresponds
to one (possibly more) event(s) in the labelled event structure. The set of labels used
could be the set of locations in a sequence diagram but is usually more concrete infor-
mation on what the location represents: the initialisation of an object, sending/receiving
a message, beginning/ending an interaction fragment, etc.

Let I denote the set of objects involved in the interaction described by sequence
diagram SD, and Mes the set of asynchronous messages exchanged. Let the set of
labels L be given by L = {(m, s), (m, r) | m ∈ Mes}. An event with label (m, s)
corresponds to the sending of message m whereas an event with label (m, r) indicates
the receipt of message m.

Definition 2 A model MSD = (E,µ) for a sequence diagram SD is obtained by com-
position of the models Ma = (Ea, µa) of each object instance a ∈ I . In MSD, the
set of events is given by Ev =

⋃
a∈I Eva, and event labels are as before, that is,

µ(e) = µa(e) for e ∈ Eva. Let m be a message sent between object a and object
b, and let E1 ⊆ Eva with µa(e1) = (m, s) for all e1 ∈ E1, and E2 ⊆ Evb with
µb(e2) = (m, r) for all e2 ∈ E2. Then necessarily |E1| = |E2| and for each e1 ∈ E1

there is a unique e2 ∈ E2 for each e1 such that e1 → e2 and local conflict #a propa-
gates over→ to obtain conflict # in M .

More details on the semantics of sequence diagrams using LES can be found in [14].

(j,s) #

g0

g1

g2 g3

g4

g5

g6 g7

g81 g82

g91 g92

(m1,r)(i,r)

(m2,r)

(m3,r)(m3,r)

(j,r)

e0

e1

e2 e3

e4

e5

e6 e7

e81 e82

e91 e92

(m1,s)(i,s)

(m2,s)

(m3,s)(m3,s)

#

Fig. 3. Model for sequence diagram sd1.

The overall event structure model for the diagram from Fig. 1 is given in Fig. 3.
Conflict propagation is not shown explicitly but is as expected and propagates over the
new causality relations gained from communication. For example, e6#ae7 and conse-
quently e6#e7. In addition, since e7 → g7 by conflict propagation we also have e6#g7.

Definition 3 Let MSD = (E,µ) be a model for sequence diagram SD where E =
(Ev,→∗,#) is an event structure. A subset of events C ⊆ Ev is a configuration in E
iff it is both 1) conflict free: for all e, e′ ∈ C,¬(e#e′) and 2) downwards closed: for
any e ∈ C and e′ ∈ Ev, if e′ →∗ e then e′ ∈ C. A maximal configuration denotes a
trace.

For example, the following is a trace for Fig. 3:C = {e0, e1, e2, e3, e4, e5, e7, e82, e92, g0,
g1, g2, g3, g4, g5, g7, g82, g92} which denotes the occurrence of m2 and not j.

4 Exact Metamodel Restriction

We propose a method that considers both the structure and dynamic interpretation of
a sequence diagram when producing an Alloy model. The model is obtained by exact
metamodel restriction, that is, by considering the abstract syntax of a diagram and con-
straints obtained from the dynamic (LES based) interpretation we generate the exact
solution in Alloy that corresponds to the intended sequence diagram. This approach is
also used to obtain a composed model for two (or more) sequence diagrams later on.

Alloy’s syntax and semantics will be apparent in the following rules and code snip-
pets, but we recall some main notions beforehand. Data domains are defined using sig-
natures (keyword sig) and represented as sets. Just as in object-oriented languages, a
signature may extend another signature, in which case the domain defined by the first is
a subset of the domain of the extended signature. A signature that is declared indepen-
dently of any other is called a top-level signature. Extensions of a signature are mutually
disjoint, as are top-level signatures. A signature can also be abstract in which case
its domain only contains elements that belong to its extending signatures. In addition,

signatures may contain fields which are captured by relations. Axioms in Alloy are
called facts which can be given a name. These must hold at any time. Alloy formu-
lae often use the atomic predicate in (inclusion), standard connectives from first-order
logic, and quantifiers all (universal) and some (existential). In general, expressions
in Alloy are built using set theoretical relational operators and constants.

All interaction metamodel elements of Fig. 2 are transformed into top-level signa-
tures in Alloy, and separate transformation rules treat each one. We omit the basic rules
for Lifeline, Message and Event (denoting OccurrenceSpecification). It suf-
fices to say that the lifeline transformation rule creates a domain called Lifeline as
an abstract signature. Furthermore, each lifeline object has fields name and class.
For each concrete instance declared in a sequence diagram we obtain declarations. The
Event signature has a field cover which corresponds to a relationship with a life-
line it belongs to, and a field next which corresponds to a relationship with a set of
events. This relationship corresponds to the immediate causality relation from our la-
belled event structures. The Message signature has two fields send and receive
both corresponding to one event. We have additional facts to indicate the order of the
events associated to a message. Messages also have a name which are introduced when
creating a concrete message as shown below.

1 one sig sd1_i extends Message {name:one i}
2 one sig sd1_m1 extends Message {name:one m1}
3 lone sig sd1_m2 extends Message {name:one m2}
4 lone sig sd1_j extends Message {name:one j}
5 one sig sd1_m3 extends Message {name:one m3}

The lines above show the declaration of the messages from sd1 (see Fig. 1 on the
left). In Alloy, we cannot have two signatures with the same name. Since messages may
be repeated accross different sequence diagrams we avoid this problem by adding the
information from which diagram it belongs to, in this case sd1. Similarly for sd2.

one sig sd2_m1 extends Message {name:one m1}
one sig sd2_m2 extends Message {name:one m2}

Some of the messages (lines 3-4 above) are declared as lone (a multiplicity key-
word in Alloy meaning 0 or 1), while others are one (exactly one). This has to do with
the fact that messages within an alternative fragment are not guaranteed to occur. We
will explain this in more detail later on.

6 lone sig e2 extends Event{}
7 lone sig e3 extends Event{}
8 lone sig e6 extends Event{}
9 lone sig e7 extends Event{}

10 lone sig e9 extends Event{}
11 lone sig g2 extends Event{}
12 lone sig g3 extends Event{}
13 lone sig g6 extends Event{}
14 lone sig g7 extends Event{}
15 lone sig g9 extends Event{}
16

17

18 //assigning events to messages
19 fact {sd1_i.send=e2 and sd1_i.receive=g2 and
20 sd1_m1.send=e3 and sd1_m1.receive=g3 and
21 sd1_j.send=e6 and sd1_j.receive=g6 and
22 sd1_m2.send=e7 and sd1_m2.receive=g7 and
23 sd1_m3.send=e9 and sd1_m3.receive=g9}

Lines 6-15 above declare the sd1 events corresponding to sending/receiving a mes-
sage. All events are declared as lone as their occurrence is dependent on whether the
associated message is sent/received. For consistency, we use the same event names as
used in our semantic model for the same diagram (see Fig. 3). Incidentally, we do not
need to duplicate events e9 and g9 since Alloy will produce two solutions to repre-
sent the two possible alternative executions. In order to associate messages and events,
we add a fact in line 19 to specify this. The following fact EventToLifeline
connects the model events to the lifelines.

25 fact EventToLifeline{
26 e2.cover=L1 and g2.cover=L2 and e3.cover=L1
27 ...
28 e9.cover =L1 and g9.cover =L2 }

Rule 1 - Combined Fragment: A combined fragments has an interaction operator
(given by type) and one or more interaction operands. An interaction operand covers
a set of Events, CombinedFragments, or both.

29 abstract sig CombinedFragment{
30 operand:set InteractionOperand,type:one CF_TYPE}
31

32 abstract sig InteractionOperand
33 {cover:set Event + CombinedFragment }
34

35 fact{all e:Event| lone op:InteractionOperand |
36 e in op.cover }
37

38 fact{all cf:CombinedFragment |
39 lone op:InteractionOperand | cf in op.cover }
40

41 fact{all op:InteractionOperand |
42 one cf:CombinedFragment | op in cf.operand }

Lines 29-33 define the abstract signatures for combined fragments and interac-
tion operators with the fields mentioned. Fragment nesting is given by the fact that
an InteractionOperator may cover a CombinedFragment. In addition, three
facts impose further constraints on the elements of these domains. Fact on line 35 states
that every event e belongs to at most one InteractionOperand, and fact on line
38 states that every combined fragment cf belongs to at most one interaction operand
(indicating fragment nesting). Finally, fact in line 41 states that all interaction operands
are operands of a combined fragment.

Rule 2 - Alternative Fragment:

43 // alt: exactly one operand will be executed
44 fact Alt-Execution {all cf: CombinedFragment |
45 (cf.TYPE = cf_TYPE_ALT) => # cf.operand = 1}

In order to preserve the semantics of alternative combined fragments, the fact above
states that exactly one operand is executed. Note the # in line 44 corresponds to Alloy’s
cardinality operator. A consequence of this fact is that every time we run the code a
different set of events (associated with a particular operand) may be executed, but every
time we only execute one operand of an alternative fragment.

The Alloy code lines below describe an alternative fragment with two operands and
no guards, as is the case of the second combined fragment from sd1 of Fig. 1.

46 one sig sd1_CF2 extends CombinedFragment{}
47 lone sig sd1_CF2_Op1 extends InteractionOperand{}
48 lone sig sd1_CF2_Op2 extends InteractionOperand{}
49 fact{all cf: sd1_CF2 | cf.TYPE = CF_TYPE_ALT }

At the model elements level, the first step is to define the combined fragment and
its operands (lines 46-49). Notice the lone keyword at the beginning of the operand
signatures. This is necessary as only one operand will be able to execute in accordance
with the fact Alt-Execution (line 44). Line 48 specifies the type of sd1 CF2 (the
second combined fragment of sd1) as an alternative fragment.

50 fact OperandToCF{
51 sd1_CF2_Op1 in sd1_CF2.operand
52 sd1_CF2_Op2 in sd1_CF2.operand }
53

54 fact EventToCF{
55 e6 in sd1_CF2_Op1.cover and g6 in sd1_CF2_Op1.cover
56 and e7 in sd1_CF2_Op2.cover and
57 g7 in sd1_CF2_Op2.cover}

The fact OperandToCF connects each operand of the second combined fragment
of sd1 to its combined fragment, while the fact EventToCF connects the events de-
clared earlier belonging to this combined fragment to the corresponding operands.

Rule 3 - Parallel Fragment: The representation of a parallel combined fragment is
similar to that of an alternative combined fragment, but without the fact Alt-Execution.
The Alloy model for sd1, which contains a parallel combined fragment, must show
a parallel execution of its operands. In other words, the events covered by different
operands can occur in an arbitrary order in accordance with our LES interpretation.

To capture the notion of GeneralOrdering from the metamodel where it cap-
tures a binary relationship between two instances of OcurrenceSpecification, here
events, is as follows.

Rule 4 - GeneralOrder: A GeneralOrdering represents a binary relationship be-
tween two events. This is specified in Alloy by a fact specifying the order in which
all messages and their underlying events occur along the lifelines of the corresponding
object instances. The transitive closure of the general ordering is irreflexive.

58 fact GeneralOrder {
59

60 all l: L1 + L2, ev1:sd1_cf1.operand.cover,
61 ev2:sd1_cf2.operand.cover | ev1.cover = l
62 and ev2.cover = l => ev2 in ev1.ˆnext
63 and
64 all l: L1, ev1:sd1_cf2.operand.cover,
65 ev2:e9 | ev1.cover = l => ev2 in ev1.ˆnext
66 and
67 all l: L2, ev1:sd1_cf2.operand.cover,
68 ev2:g9 | ev1.cover = l => ev2 in ev1.ˆnext
69 }

In the above fact we make use of the unary operator ∧c to denote the transitive clo-
sure of c. The fact GeneralOrder depicts the order of the element in the sd1
Fig. 1. Lines 60-62 state that all events ev1 and ev2 such that ev1 belongs to the first
combined fragment and ev2 belongs to the second combined fragment, if they cover
the same lifeline then ev2 belongs to the transitive closure of ev1.next, that is, it

necessarily occurs after ev1. Note that ev1 6= ev2 since they are elements from differ-
ent extensions of CombinedFragment and necessarily disjoint in Alloy. Lines 64-68
show that the occurrence of an event e9 or g9 must be preceded by the occurrence of
events covered by the second combined fragment. In other words, sending/receiving
message m3 can only occur if the combined fragments have executed beforehand.

5 Semantics of Composition

We define the semantics of composition for sequence diagrams in the context of labelled
event structures. We restrict ourselves to the composition of two diagrams. The case
for the composition of a finite number of diagrams can be generalised from here. In
the sequel, let SD1 and SD2 be two sequence diagrams, with sets of instances and
messages given by I1, I2, Mes1 and Mes2 respectively.

When composing diagrams SD1 and SD2 we consider interleaving and shared
behaviour. In the case of interleaving, the diagrams evolve completely autonomously of
one another. That is, the interleaving of diagrams SD1 and SD2 is written SD1 ‖SD2

and equivalent to par(SD1, SD2). In other words, the composition is behaviourally
equivalent to a diagram with a par fragment and two operands where each operand
contains the behaviour described in SD1 and SD2 respectively.

The model for SD1 ‖ SD2, MSD1‖SD2
= (E,µ), is an event structure where

Ev = Ev1 ∪ Ev2, all relations are preserved, and µ(e) is defined for all e iff µi(e) is
defined for some i ∈ {1, 2} in which case µ(e) = µi(e). For shared instances o ∈ I1∩I2
we further match the initial events for o in Ev1 and Ev2. Recall that an initial event for
an object is an event for which ↓ e = {e} which means that the local configuration only
contains itself (cf. Section 3). We use ↓ Evo to indicate the singleton containing the
initial event of instance o.

The composition of diagrams with shared behaviour is written SD1 ‖G SD2 where
G indicates the composition glue. In this paper we go beyond a syntactic matching of
objects and/or messages from the different diagrams. We assume that the composition
glue can in addition impose restrictions on the occurrences of messages, their ordering,
and so on. The case of basic syntactic matching was treated informally in [2] and we
cover behavioural composition glue here which subsumes syntactic matching.

We define the composition of two models formally in two stages. First we define
the model obtained by syntactic matching of objects and messages of both models. We
then take the glue constraints and apply a restriction on the matched composed model
that satisfies the glue constraints.

Let ∆ ⊆ L1 × L2 ∪ I1 × I2 be a binary relation over labels or instances satisfying
if (l, l′) ∈ ∆ and (l, l′′) ∈ ∆ then l′ = l′′; and if (l′, l) ∈ ∆ and (l′′, l) ∈ ∆ then
l′ = l′′. We call ∆ a matching over labels and instances. Let Ev1 (and similarly Ev2)
correspond to the set of events in Ev1 with a label not matched in ∆.

Definition 4 LetM1 = (E1, µ1) andM2 = (E2, µ2) be models for sequence diagrams
SD1 and SD2, and ∆ be a matching over labels and instances. SD1 ‖∆ SD2 is a
matched composition model for ∆ given by M∆ = (E,µ) such that events in M∆ are
given by

Ev = Ev1 ∪ Ev2 ∪

(m3,r)

#

#f6 h5 h6

f4 h4

f5
(m4,s) (m5,s) (m4,r) (m5,r)

e1

e2

e4

e5

e6

e81 e82

e91 e92

(i,s)

(m3,s)

(j,s)

(e0,f0)

g1

g4

g5

g6 (g7,h3)

g81 g82

g91 g92

(i,r)

(j,r)

(g0,h0)

(e3,f1)
(m1,s) g2 (g3,h1)

h2

(m1,r)

f2
(new,r) (new,s)

(m2,s)
(e7,f3)

(m2,r)

(m3,s) (m3,r)

#

Fig. 4. Matched composition model.

{(e1, e2)|(L(e1), L(e2)) ∈ ∆}∪
{(e1, e2)|(e1 ∈↓ Evi1 , e2 ∈↓ Evi2 and (i1, i2) ∈ ∆)}

The labels are unchanged, that is, µ(e) = µi(e) for e ∈ Evi with i ∈ {1, 2} and
µ(e1, e2) = µ1(e1) = µ2(e2). Event relations in M∆ are derived from the relations in
M1 and M2 as follows (e1, e2) →∗ e iff (e1 →∗1 e or e2 →∗2 e); ei → e′i iff ei →∗i e′i;
and (e1, e2) →∗ (e′1, e

′
2) iff (e1 →∗1 e′1 and e2 →∗2 e′2). Similarly for the conflict

relation with additional conflict derived from propagation over causality.

According to the above definition, the event pairs (e1, e2) in Ev correspond to
events matched by ∆ or denoting initial events for shared objects. Relations and la-
bels are preserved in the composition as expected.

If the model obtained above is a valid labelled event structure then a composition
for SD1 and SD2 according to ∆ exists. Otherwise the models are not composable.

Proposition 1 Let M1 = (E1, µ1) and M2 = (E2, µ2) be models for sequence dia-
grams SD1 and SD2, and ∆ be a matching over instances and labels. The diagrams
are composable according to ∆ iff the matched composition model M∆ = (E,µ) is a
well defined labelled event structure.

A case that illustrates a non composable model is one where the same two messages
(say m1 and m2) are sent in the reverse order in two diagrams. The model obtained by
matching the respective send/receive events in both diagrams would lead to an invalid
labelled event structure as the model would contain a cycle which is not allowed. We
illustrate the idea of shared behaviour further with the example from Section 2 to ob-
tain the composition of sd1 of Fig. 1. We consider the matching of messages and
lifelines with the same name, i.e., messages m1 and m2, and lifelines for object a and
object b. There is a matched composition model M∆ for sd1 and sd2 as shown in
Fig. 4. It shows the matched initial events (e.g., (e0, f0)) and events matched by ∆
(e.g., (e3, f1) for label (m1, s)). Event relations are derived from the original relations

and any conflict that arises from propagation over the extended causality relation. In
this case, e6#(e7, f3) since e6#e7 and consequently also e6#f4, and so on.

We want to allow a designer to add further constraints on the expected composition
by for example specifying behaviour that should never occur (forbidden events) or se-
quences of events that must occur in a given order, and so on. This can be seen as a way
to give priority to certain specified interactions, and eliminates some of the possible
traces in the composed model.

In the following, let M1 = (E1, µ1) and M2 = (E2, µ2) be composable models
over ∆ for sequence diagrams SD1 and SD2 with ∆ a matching over labels and in-
stances. Let M∆ = (E,µ) be the matched composed model obtained, and Γ be the set
of maximal configurations (traces) in M∆.

Definition 5 A behavioural glue forM∆ = (E,µ) is given byG = (Evg,→∗g,#g, Fvg)
whereEvg, Fvg ⊆ Ev are subsets of events that occur inE, and→∗g,#g ⊆ Evg×Evg
are binary relations (causality and conflict) defined over the events in Evg . Events in
Fv are forbidden events.

A behavioural glue G as defined above may contain relations over events which
disagree with the relations in M∆. However, we can always obtain an equivalent glue
G′ that preserves the relations inM∆ = (E,µ) by considering all the events that violate
the original relations as forbidden events. We omit a formal proof here, but illustrate the
idea with an example.

Definition 6 A composed model SD1 ‖G SD2 for relation preserving glue G is given
by MG = (EG, µG) such that it corresponds to M∆ by removing all traces t ∈ Γ such
that Fv ∩ t 6= ∅.

Consider the two cases of behavioural glue as shown in Fig. 5.
The behavioural glue G1 imposes that the occurrence of message j is forbidden in the
composed model. Glue G2 imposes that for m3 to occur, m2must have happened before.

neg

a:A b:B
sd G1

j

G2
a:A b:B

m3

m2

sd

Fig. 5. Examples of behavioural glue.

For G1 we have G1 = (∅, ∅, ∅, {e6, g6})
where the events associated to message j
are forbidden. This means that the com-
posed model for sd1 and sd2 wrt G1
removes all traces which contain events
e6 and g6 from the matched composi-
tion model shown in Fig. 4. Since the
events in ↓ e5 (and similarly ↓ g5) be-
long to another valid trace they are not
removed. We obtain a composed model
which is identical to the matched compo-

sition model but where the highlighted relations and events have been removed (i.e.,
events e6, e81, e91, g6, g81, g91 and relations).

For G2 we consider an equivalent glue which preserves the relations, namely G2 =
(Evg2,→∗g2, ∅, Fvg2) where Evg2 = {(e7, f3), (g7, h3), e92, g92}, Fvg2 = {e91, g91}
and the causality relation is such that →∗g2= {((e7, f3), e92), ((g7, h3), g92)}. In this

case we need to remove all traces which contain e91 and g91 from the matched com-
position model shown in Figure 4. The composed model for sd1 and sd2 wrt G2
coincides with the composed model wrt G1 described earlier. This follows because the
traces affected by the forbidden events are the same. We show how the model is gener-
ated automatically with Alloy in the next section.

6 Composition with Alloy

We describe how the formal composition semantics from the previous section is inte-
grated in our SD2Alloy approach. We capture the syntactic matching of labels and in-
stances (given by ∆ in Section 5) by additional axioms (facts). The following describes
the syntactic matching of labels and instances (lifelines) for our example.

fact LifelineMatching{
//matching lifelines from sd1 and sd2
all l1:sd1_L1, l2:sd2_L2 |
(l1.name=l2.name && l1.class=l2.class) => #l2=0
}
fact MessageMatching{
//matching message sd1_m1 and sd2_m1
all m:sd1_m1, n: sd2_m1 |
(m.name=n.name) => #n=0 and #sd2_e3=0 and #sd2_g3=0

//matching message sd1_m2 and sd2_m2
all m:sd1_m2, n:sd2_m2 |
(m.name =n.name) => #n= 0 and #sd2_e7=0 and #sd2_g7=0
}

The fact LifelineMatching matches the shared lifelines in both diagrams, and
the fact MessageMatching matches the messages with the same name. The idea in
Alloy is that the messages and events from one of the models are kept (here sd1) and
the others are hidden by limiting its occurrence to zero (i.e., its cardinality is zero).

The examples of behavioural glue introduced in Fig. 5 can be captured as facts in
Alloy. G1 and G2 are given in the following facts.

fact Glue1{#sd1_j=0
all sd1_j_send:sd1_e6, sd1_j_receive:sd1_g6 |
#sd1_j_send=0 and #sd1_j_receive=0}

fact Glue2{
#sd1_m3=#sd1_m2
all sd1_m2_send:sd1_e7, sd1_m3_send:sd1_e9 |
sd1_m3_send in sd1_m2_send.ˆnext

all sd1_m2_receive:sd1_g7, sd1_m3_receive:sd1_g9 |
sd1_m3_receive in sd1_m2_receive.ˆnext
}

Glue1 states that j does not occur and in addition the associated events also do not
occur. Glue2 states that every time m3 occurs it must occur with m2. In other words, m2
must have happened before. Again, we control occurrence with the cardinality operator
#. In addition, the behavioural glue for G2 also defines the order between m3 and m2
and underlying send and receive events.

As we have seen in the previous section, the effect of each behavioural glue in
the composed model is identical. This has been checked with Alloy, and message j

does not occur in any solution obtained. Traces obtained with our tool have a direct
correspondence with the traces of our semantic model.

7 Related work

Zhang et al. [23] and Rubin et al. [19] use Alloy for the composition of class diagrams.
They transform UML class diagrams into Alloy and compose them automatically. They
focus on composing static models and the composition code is produced manually. Widl
et al. [21] deal with composing concurrently evolved sequence diagrams in accordance
to the overall behaviour given in state machine models. They make direct use of SAT-
solvers for the composition. Liang et al. [15] present a method of integrating sequence
diagrams based on the formalisation of sequence diagrams as typed graphs. Both these
papers focus on less complex structures. For example, they do not deal with combined
fragments which can potentially cause substantial complexity.

Composition is also important in other domains such as aspect-oriented modelling.
Whittle and Jayaraman [3] introduce a tool called MATA for weaving based on se-
quence diagrams. They put less emphasis on the semantics of the composition. Grønmo
et al. [10] propose a semantics-based technique for weaving behavioural aspects into
sequence diagrams. The example we use in this paper is an adaptation of the exam-
ple introduced there. However, we have a true-concurrent semantics and consider and
treat parallelism in interactions. In subsequent work, Grønmo et al. [9] propose the con-
formance issue for aspects in ensuring that the woven always leads to the same result
regardless of the order in which aspects are applied. When looking at the integration of
several model views or diagrams, Bowles and Bordbar [6] present a method of mapping
a design consisting of class diagrams, OCL constraints and sequence diagrams into a
mathematical model for detecting and analysing inconsistencies.

Checkik et al. [7] identify model integration operators, such as merge, weave, and
composition, and describe each operator along with its applicability. In addition, they
provide a set of desirable criteria (completeness, non-redundancy, minimality, totality,
soundness) to evaluate the merge operator. This is a direction orthogonal to our research
and remains an area for future investigation.

8 Conclusion

This paper presents an automated method for sequence diagram composition. The out-
line of the method involves the creation of logical constraints that uniquely identify each
component sequence diagram as an instance of the metamodel. To combine the models,
logical constraints that synchronise the two models are produced. Some of these logical
constraints declare matching elements and some are to enforce behaviour involved in
the composition, such as specifying behaviour that should never occur or sequences of
events that must occur in a given order. This makes it possible for a designer to give pri-
ority to certain specified interactions, which is considered in the solution by eliminating
unwanted traces from an initial matched model obtained.

To ensure correctness of the composition process, we have formalised the semantics
of the composition with the help of labelled event structures. The result obtained auto-
matically with Alloy preserves our formal interpretation of parallel composition with
synchronisation glue. Our Alloy-based automated method of composition has been im-
plemented as an Eclipse plugin for the composition of sequence diagrams. Throughout
the paper a small example of composing sequence diagrams inspired by an example
from [10] related to weaving aspects is used.

References

1. Allen, R., Garlan, D.: Formalizing architectural connection. In: ICSE 1994. pp. 71–80. IEEE
Computer Society Press (1994)

2. Alwanain, M., Bordbar, B., Bowles, J.: Automated composition of sequence diagrams via
alloy. In: Pires, L., Hammoudi, S., Filipe, J., das Neves, R. (eds.) MODELSWARD 2014. pp.
384–391. SciTePress (2014)

3. Araújo, J., Whittle, J.: Aspect-oriented compositions for dynamic behavior models. In: Mor-
eira, A., Chitchyan, R., Araújo, J., Rashid, A. (eds.) Aspect-Oriented Requirements Engi-
neering, pp. 45–60. Springer (2013)

4. Araújo, J., Whittle, J., Kim, D.: Modeling and composing scenario-based requirements with
aspects. In: RE 2004. pp. 58–67. IEEE Computer Society Press (2004)

5. Berre, D.L., Parrain, A.: The SAT4j library, release 2.2 - system description. Journal on
Satisfiability, Boolean Modeling and Computation 7, 59–64 (2010)

6. Bowles, J., Bordbar, B.: A formal model for integrating multiple views. In: ACSD 2007. pp.
71–79. IEEE Computer Society Press (2007)

7. Chechik, M., Nejati, S., Sabetzadeh, M.: A relationship-based approach to model integration.
Innovations in Systems and Software Engineering 8(1), 3–18 (2012)

8. Fiadeiro, J., Lopes, A., Wermelinger, M.: A mathematical semantics for architectural con-
nectors. In: Backhouse, R., Gibbons, J. (eds.) Generic Programming, LNCS, vol. 2793, pp.
178–221. Springer (2003)

9. Grønmo, R., Runde, R., Møller-Pedersen, B.: Confluence of aspects for sequence diagrams.
Software & Systems Modeling 12(4), 789–824 (2013)

10. Grønmo, R., Sørensen, F., Møller-Pedersen, B., Krogdahl, S.: Semantics-based weaving of
uml sequence diagrams. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008, LNCS,
vol. 5063, pp. 122–136. Springer (2008)

11. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-based Programming Using LSCs and the
Play-Engine. Springer (2003)

12. Jackson, D.: Software Abstractions: logic, language and analysis. MIT Press (2006)
13. Klein, J., Hélouët, L., Jézéquel, J.: Semantic-based weaving of scenarios. In: AOSD’06. pp.

27–38. ACM (2006)
14. Küster-Filipe, J.: Modelling concurrent interactions. Theoretical Computer Science 351,

203–220 (2006)
15. Liang, H., Diskin, Z., Dingel, J., Posse, E.: A general approach for scenario integration. In:

MoDELS 2008. pp. 204–218. LNCS 5301, Springer (2008)
16. Micskei, Z., Waeselynck, H.: The many meanings of UML 2 sequence diagrams: a survey.

Software and Systems Modeling 10, 489–514 (2011)
17. OMG: UML: Superstructure. Version 2.4.1. OMG, http://www.omg.org. (2011),

http://www.omg.org, document id: formal/2011-08-06. [accessed 1-6-2012]
18. R.Reddy, Solberg, A., R.France, Ghosh, S.: Composing sequence models using tags. In:

Proc. of MoDELS Workshop on Aspect Oriented Modeling (2006)

19. Rubin, J., Chechik, M., Easterbrook, S.: Declarative approach for model composition. In:
MiSE 2008. pp. 7–14. ACM (2008)

20. Whittle, J., Araújo, J., Moreira, A.: Composing aspect models with graph transformations.
In: Proceedings of the 2006 international workshop on Early aspects at ICSE. pp. 59–65.
ACM (2006)

21. Widl, M., Biere, A., Brosch, P., Egly, U., Heule, M., Kappel, G., Seidl, M., Tompits, H.:
Guided merging of sequence diagrams. In: SLE 2012. pp. 164–183. LNCS 7745, Springer
(2013)

22. Winskel, G., Nielsen, M.: Models for Concurrency. In: Abramsky, S., Gabbay, D., Maibaum,
T. (eds.) Handbook of Logic in Computer Science, Vol. 4, Semantic Modelling, pp. 1–148.
Oxford Science Publications (1995)

23. Zhang, D., Li, S., Liu, X.: An approach for model composition and verification. In: NCM
2009. pp. 1102–1107. IEEE Computer Society Press. (2009)

